Publications by authors named "Magnus af Ugglas"

Fragmentation processes of SO2 following excitation of the six main O 1s pre-edge resonances, as well as above the ionization threshold and below the resonances, are studied using a position-sensitive time-of-flight ion imaging detector, and the associated dissociation branching ratios and break-up dynamics are determined. In order to distinguish between the O(+) and S(2+) fragments of equal mass-to-charge ratio, the measurements have been performed with the isotopically enriched S(18)O2 sample. By analysis of the complete set of the fragment momentum vectors, the β values for the fragments originating from the SO(+) + O(+) break-up and the kinetic energy release for fragmentation channels of both SO2 (2+) and SO2 (3+) parent ions are determined.

View Article and Find Full Text PDF

An investigation into the dissociative recombination process for H(13)CO(+) using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at ∼ 0 eV collision energy to be the following: CO + H 87 ± 2%, OH + C 9 ± 2%, and O + CH 4 ± 2%. The formation of electronically excited CO in the dominant reaction channel has also been studied, and we report the following tentative branching fractions for the different CO product electronic states: CO(X (1)Σ(+)) + H, 54 ± 10%; CO(a (3)Π) + H, 23 ± 4%; and CO(a' (3)Σ(+)) + H, 23 ± 4%.

View Article and Find Full Text PDF

CH4(+) is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the common destruction mechanisms for molecular ions in these regions, dissociative recombination (DR), is somewhat uncertain. Here, we present absolute measurements for the DR of CH4(+) made using the heavy ion storage ring CRYRING in Stockholm, Sweden.

View Article and Find Full Text PDF

The dissociative recombination of the acetaldehyde cation, CH(3)CHO(+), has been investigated at the heavy ion storage ring CRYRING at the Manne Siegbahn Laboratory in Stockholm, Sweden. The dependence of the absolute cross section of the reaction on the relative kinetic energy has been determined and a thermal rate coefficient of k(T) = (1.5 ± 0.

View Article and Find Full Text PDF

The vibrational population of the hydroxyl radical, OH, formed in the OH+H+H channel arising from the dissociative recombination of the hydronium ion, H(3)O(+), has been investigated at the storage ring CRYRING using a position-sensitive imaging detector. Analysis shows that the OH fragments are predominantly produced in the v=0 and v=1 states with almost equal probabilities. This observation is in disagreement with earlier FALP experiments, which reported OH(v=0) as the dominant product.

View Article and Find Full Text PDF

The determination of the dissociative recombination rate coefficient of H(3) (+) has had a turbulent history, but both experiment and theory have recently converged to a common value. Despite this convergence, it has not been clear if there should be a difference between the rate coefficients for ortho-H(3) (+) and para-H(3) (+). A difference has been predicted theoretically and could conceivably impact the ortho:para ratio of H(3) (+) in the diffuse interstellar medium, where H(3) (+) has been widely observed.

View Article and Find Full Text PDF

This paper presents results concerning measurements of the dissociative recombination (DR) of dihydrogen sulfide ions. In combination with the ion storage ring CRYRING an imaging technique was used to investigate the breakup dynamics of the three-body channel in the DR of 32SD2(+). The two energetically available product channels S(3P) + 2D(2S) and S(1D) + 2D(2S) were both populated, with a branching fraction of the ground-state channel of 0.

View Article and Find Full Text PDF

Branching ratios of the dissociative recombination reactions of the astrophysically relevant ions DCO+, N2H+ and DOCO+ (as substitute for HOCO+) have been measured using the CRYRING storage ring at the Manne Siegbahn Laboratory at the University of Stockholm, Sweden. For DCO+, the channel leading to D and CO was by far the most important one (branching ratio 0.88), only small contributions of the CD + O and OD + C product pathways (branching ratios 0.

View Article and Find Full Text PDF