Exploiting embryonic stem cell (ESC)-derived cardiomyocytes as a vital source for cell therapies and tissue engineering will depend on robust, large-scale production processes. Recently, we have reported stirring-controlled formation of embryoid bodies, enabling the generation of pure cardiomyocytes in 2-L scale. Expansion and differentiation of genetically engineered mouse ESCs was followed by antibiotic-based cardiomyocyte enrichment.
View Article and Find Full Text PDFConfocal laser scanning microscopy (CLSM) is being increasingly used for observing protein uptake in porous chromatography resins. Recent CLSM studies have revealed the possible existence of a nondiffusive protein transport mechanism. Observing protein uptake with CLSM requires labeling the protein with a fluorescent probe.
View Article and Find Full Text PDFIt is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells.
View Article and Find Full Text PDF