Publications by authors named "Magnus Rath"

Maintaining an optimal leaf and stem orientation to yield a maximum photosynthetic output is accomplished by terrestrial plants using sophisticated mechanisms to balance their orientation relative to the Earth's gravity vector and the direction of sunlight. Knowledge of the signal transduction chains of both gravity and light perception and how they influence each other is essential for understanding plant development on Earth and plant cultivation in space environments. However, analyses of cellular signal transduction processes in weightlessness, such as live cell imaging of signaling molecules using confocal fluorescence microscopy, require an adapted experimental setup that meets the special requirements of a microgravity environment.

View Article and Find Full Text PDF

In Arabidopsis gravitropism is affected by two antagonistically interacting proteins, AGD12 (ADP-RIBOSYLATION FACTOR GTPase-ACTIVATING PROTEIN) and EHB1 (ENHANCED BENDING 1). While AGD12 enhances gravitropic bending, EHB1 functions as a negative element. To further characterize their cellular function, we analyzed the location of AGD12-GFP and EHB1-GFP fusion proteins in the root apex by confocal laser-scanning microscopy after gravitropic stimulation.

View Article and Find Full Text PDF

The ADP-RIBOSYLATION FACTOR GTPase-ACTIVATING PROTEIN (AGD) 12, a member of the ARF-GAP protein family, affects gravitropism in Arabidopsis thaliana. A loss-of-function mutant lacking AGD12 displayed diminished gravitropism in roots and hypocotyls indicating that both organs are affected by this regulator. AGD12 is structurally related to ENHANCED BENDING (EHB) 1, previously described as a negative effector of gravitropism.

View Article and Find Full Text PDF

Premise Of The Study: The mycoheterotrophic lifestyle has enabled some plant lineages to obtain carbon from their mycorrhizal symbionts. The mycoheterotrophic genus Epirixanthes (Polygalaceae) consists of six species from tropical Asia. Although it is probably closely related to the chlorophyllous genus Salomonia and linked to arbuscular mycorrhizal fungi, lack of DNA sequence data has thus far prevented these hypotheses from being tested.

View Article and Find Full Text PDF

The serious problem of extended tissue thickness in the analysis of plant-fungus associations was overcome using a new method that combines physical and optical sectioning of the resin-embedded sample by microtomy and confocal microscopy. Improved tissue infiltration of the fungal-specific, high molecular weight fluorescent probe wheat germ agglutinin conjugated to Alexa Fluor® 633 resulted in high fungus-specific fluorescence even in deeper tissue sections. If autofluorescence was insufficient, additional counterstaining with Calcofluor White M2R or propidium iodide was applied in order to visualise the host plant tissues.

View Article and Find Full Text PDF

The mechanisms underpinning broad compatibility in root symbiosis are largely unexplored. The generalist root endophyte Piriformospora indica establishes long-lasting interactions with morphologically and biochemically different hosts, stimulating their growth, alleviating salt stress, and inducing local and systemic resistance to pathogens. Cytological studies and global investigations of fungal transcriptional responses to colonization of barley and Arabidopsis at different symbiotic stages identified host-dependent colonization strategies and host-specifically induced effector candidates.

View Article and Find Full Text PDF

Ustilago maydis is a plant-pathogenic fungus that establishes a biotrophic relationship with its host plant, Zea mays. The pathogenic stage of U. maydis is initiated by the fusion of two haploid cells, resulting in the formation of a dikaryotic hypha that invades the plant cell.

View Article and Find Full Text PDF