Publications by authors named "Magnus R Krogh"

An abnormal systolic motion is frequently observed in patients with left bundle branch block (LBBB), and it has been proposed as a predictor of response to cardiac resynchronization therapy (CRT). Our goal was to investigate if this motion can be monitored with miniaturized sensors feasible for clinical use to identify response to CRT in real time. Motion sensors were attached to the septum and the left ventricular (LV) lateral wall of eighteen anesthetized dogs.

View Article and Find Full Text PDF

Measurements of the left ventricular (LV) pressure trace are rarely performed despite high clinical interest. We estimated the LV pressure trace for an individual heart by scaling the isovolumic, ejection and filling phases of a normalized, averaged LV pressure trace to the time-points of opening and closing of the aortic and mitral valves detected in the individual heart. We developed a signal processing algorithm that automatically detected the time-points of these valve events from the motion signal of a miniaturized accelerometer attached to the heart surface.

View Article and Find Full Text PDF

Objective: A miniaturized accelerometer can be incorporated in temporary pacemaker leads which are routinely attached to the epicardium during cardiac surgery and provide continuous monitoring of cardiac motion during and following surgery. We tested if such a sensor could be used to assess volume status, which is essential in hemodynamically unstable patients.

Methods: An accelerometer was attached to the epicardium of 9 pigs and recordings performed during baseline, fluid loading, and phlebotomy in a closed chest condition.

View Article and Find Full Text PDF

We investigated whether tachycardia in left bundle branch block (LBBB) decreases left ventricular (LV) diastolic distensibility and increases diastolic pressures due to incomplete relaxation, and if cardiac resynchronization therapy (CRT) modifies this response. Thirteen canines were studied at baseline heart rate (120 beats/min) and atrial paced tachycardia (180 beats/min) before and after induction of LBBB and during CRT. LV and left atrial pressures (LAP) were measured by micromanometers and dimensions by sonomicrometry.

View Article and Find Full Text PDF

A miniaturized accelerometer attached to the heart has been used for monitoring functional parameters such as early systolic velocity and displacement. Currently, processing of the accelerometer signal for derival of these functional parameters depends on determining start systole by detecting the ECG R-peaks. This study proposes an alternative method using only the accelerometer signal to detect start systole, making additional ECG recordings for this purpose redundant.

View Article and Find Full Text PDF

Previous studies have shown that miniaturised accelerometers can be used to monitor cardiac function and automatically detect ischemic events. However, accelerometers cannot differentiate between acceleration due to motion and acceleration due to gravity. Gravity filtering is essential for accurate integration of acceleration to yield velocity and displacement.

View Article and Find Full Text PDF

Aims: There are conflicting data and no consensus on how to measure acute response to cardiac resynchronization therapy (CRT). This study investigates, which contractility indices are best markers of acute CRT response.

Methods And Results: In eight anaesthetized dogs with left bundle branch block, we measured left ventricular (LV) pressure by micromanometer and end-diastolic volume (EDV) and end-systolic volume (ESV) by sonomicrometry.

View Article and Find Full Text PDF

A miniaturized accelerometer fixed to the heart can be used for monitoring of cardiac function. However, an accelerometer cannot differentiate between acceleration caused by motion and acceleration due to gravity. The accuracy of motion measurements is therefore dependent on how well the gravity component can be estimated and filtered from the measured signal.

View Article and Find Full Text PDF