is a major cause of community-acquired pneumonia. While studied extensively in various laboratory models, less is known about the cell function while inside the human lung. We present the first analysis of the global gene expression of while the bacteria are in the lung during pneumonia ( conditions) and contrast it with bacterial isolates that have been cultured under standard laboratory conditions ( conditions).
View Article and Find Full Text PDFBackground: Bacterial infection causes accumulation of neutrophils that release antimicrobial proteins including heparin-binding protein (HBP). In human airways, this neutrophil accumulation can be re-capitulated via intrabronchial exposure to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, that also causes a local increase in the neutrophil-mobilizing cytokine IL-26. Although LPS is considered a weak stimulus for HBP release , its effect on HBP release in human airways has not been characterized.
View Article and Find Full Text PDFBackground: To prevent nosocomial transmission of SARS-CoV-2, infection prevention control (IPC) measures are implemented for patients with symptoms compatible with COVID-19 until reliable test results are available. This delays admission to the most appropriate ward based on the medical condition. SARS-CoV-2 rapid antigen detection (RAD) tests and point-of-care (POC) rapid RT-PCR (VitaPCR) were introduced at emergency department (ED) at Skåne University Hospital, Sweden in late 2020, but the consequence on patient flow and targeted admission is unknown.
View Article and Find Full Text PDFPneumonia is a global cause of mortality, and this provides a strong incentive to improve the mechanistic understanding of innate immune responses in the lungs. Here, we characterized the involvement of the cytokine interleukin (IL)-26 in bacterial lung infection. We observed markedly increased concentrations of IL-26 in lower airway samples from patients with bacterial pneumonia and these correlated with blood neutrophil concentrations.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2021
Chronic obstructive pulmonary disease (COPD) is associated with colonization by bacterial pathogens and repeated airway infections, leading to exacerbations and impaired lung function. The highly glycosylated mucins in the mucus lining the airways are an important part of the host defense against pathogens. However, mucus accumulation can contribute to COPD pathology.
View Article and Find Full Text PDFBacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood.
View Article and Find Full Text PDFOat hulls are an excellent dietary fibre source for food supplements due to their rich lignocellulose composition as well as their great abundance as low-value agricultural side stream. For the production of white fibre supplements, a mild, but effective bleaching of the hulls is required. Chemical bleaching with hydrogen peroxide and sodium hydroxide was here found to be a suitable method increasing the CIE * value (corresponds to a lightness value) above 85.
View Article and Find Full Text PDFObjectives: Ventilator-associated pneumonia (VAP) is difficult to diagnose using clinical criteria and no biomarkers have yet been proved to be sufficiently accurate. The use of the neutrophil-derived Heparin-binding protein (HBP) as a biomarker for pneumonia was investigated in this exploratory case-control study in two intensive care units at a tertiary referral hospital.
Methods: Patients with clinical signs of pneumonia were recruited and bronchoalveolar lavage fluid (BALF) or bronchial wash (BW) samples were collected.
The outer membrane protein A (OmpA) family contains an evolutionary conserved domain that links the outer membrane in Gram-negative bacteria to the semi-rigid peptidoglycan (PG) layer. The clinically significant pathogen carries several OmpA family proteins (OprF, OprL, PA0833, and PA1048) that share the PG-binding domain. These proteins are important for cell morphology, membrane stability, and biofilm and outer membrane vesicle (OMV) formation.
View Article and Find Full Text PDFPseudomonas aeruginosa efficiently adheres to human tissues, including the lungs and skin, causing infections that are difficult to treat. Laminin is a main component of the extracellular matrix, and in this study we defined bacterial laminin receptors on P. aeruginosa.
View Article and Find Full Text PDFPathogens causing pneumonia utilize the complement regulator vitronectin to evade complement-mediated killing. Although vitronectin is associated with several chronic lung diseases, the role of bronchoalveolar vitronectin in pneumonia has not been studied. This study sought to reveal the involvement of vitronectin in the bronchoalveolar space during pneumonia, to assess the effect of outer membrane vesicles and endotoxin on vitronectin release, and to determine whether bacterial pathogens utilize pulmonary vitronectin for evasion.
View Article and Find Full Text PDF, and are common Gram-negative pathogens associated with an array of pulmonary diseases. All three species have multiple adhesins in their outer membrane, surface structures that confer the ability to bind to surrounding cells, proteins or tissues. This mini-review focuses on proteins with high affinity for the components of the extracellular matrix such as collagen, laminin, fibronectin and vitronectin.
View Article and Find Full Text PDFThe oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2017
We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region.
View Article and Find Full Text PDFRespiratory tract infections are one of the leading causes of mortality worldwide urging better understanding of interactions between pathogens causing these infections and the host. Here we report that an extracellular matrix component proline/arginine-rich end leucine-rich repeat protein (PRELP) is a novel antibacterial component of innate immunity. We detected the presence of PRELP in human bronchoalveolar lavage fluid and showed that PRELP can be found in alveolar fluid, resident macrophages/monocytes, myofibroblasts, and the adventitia of blood vessels in lung tissue.
View Article and Find Full Text PDFMechanical methods for single-molecule control have potential for wide application in nanodevices and machines. Here we demonstrate the operation of a single-molecule switch made functional by the motion of a phenyl ring, analogous to the lever in a conventional toggle switch. The switch can be actuated by dual triggers, either by a voltage pulse or by displacement of the electrode, and electronic manipulation of the ring by chemical substitution enables rational control of the on-state conductance.
View Article and Find Full Text PDFObjectives: Early identification of patients with infection and at risk of developing severe disease with organ dysfunction remains a difficult challenge. We aimed to evaluate and validate the heparin-binding protein, a neutrophil-derived mediator of vascular leakage, as a prognostic biomarker for risk of progression to severe sepsis with circulatory failure in a multicenter setting.
Design: A prospective international multicenter cohort study.
Background: Pseudomonas aeruginosa is a pathogen that frequently colonizes patients with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Several pathogens are known to bind vitronectin to increase their virulence. Vitronectin has been shown to enhance P.
View Article and Find Full Text PDFWe study the elementary processes behind one of the pioneering works on scanning tunneling microscope controlled reactions of single molecules [Stipe et al., Phys. Rev.
View Article and Find Full Text PDFObjectives: The aim of this study was to detect the presence of IgG against Moraxella catarrhalis β-lactamase in healthy adults, and to determine whether outer membrane vesicles (OMVs) could protect the enzyme from inhibition by anti-β-lactamase IgG.
Methods: Transmission electron microscopy was used to detect the presence of β-lactamase in OMVs. Sera were examined by ELISA for specific IgG directed against recombinant M.
Conduction properties of nanoscale contacts can be studied using first-principles simulations. Such calculations give insight into details behind the conductance that is not readily available in experiments. For example, we may learn how the bonding conditions of a molecule to the electrodes affect the electronic transport.
View Article and Find Full Text PDFWe study inelastic scattering in alkanethiol self-assembled monolayers using isotope labeling and unambiguously determine which molecular vibrations are active in the inelastic electron tunneling spectroscopy. The selective deuteration of the molecule also allows us to show that the different parts of the molecule contribute approximately equally to inelastic signal. Our first principles calculations confirm the experimental results and provide insights on electron transport through molecules.
View Article and Find Full Text PDFWe investigate inelastic electron tunneling spectroscopy (IETS) for alkanethiol self-assembled monolayers (SAM) with a scanning tunneling microscope and compare it to first-principles calculations. Using a combination of partial deuteration of the molecule and high-resolution measurements, we identify and differentiate between methyl (CH3) and methylene (CH2) groups and their symmetric and asymmetric C-H stretch modes. The calculations agree quantitatively with the measured IETS in producing the weight of the symmetric and asymmetric C-H stretch modes while the methylene stretch mode is largely underestimated.
View Article and Find Full Text PDFWe study formation and conductance of alkanedithiol junctions using density functional based molecular dynamics. The formation involves straightening of the molecule, migration of thiol end-groups, and pulling out Au atoms. Plateaus are found in the low-bias conductance traces which decrease by 1 order of magnitude when gauche defects are present.
View Article and Find Full Text PDFWe present a method to analyze the results of first-principles based calculations of electronic currents including inelastic electron-phonon effects. This method allows us to determine the electronic and vibrational symmetries in play, and hence to obtain the so-called propensity rules for the studied systems. We show that only a few scattering states--namely those belonging to the most transmitting eigenchannels--need to be considered for a complete description of the electron transport.
View Article and Find Full Text PDF