Publications by authors named "Magnus Oden"

Direct electrification of oxygen-associated reactions contributes to large-scale electrical storage and the launch of the green hydrogen economy. The design of the involved catalysts can mitigate the electrical energy losses and improve the control of the reaction products. We evaluate the effect of the interface composition of electrocatalysts on the efficiency and productivity of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), both mechanistically and at device levels.

View Article and Find Full Text PDF

The skin is the largest organ of the human body. Wounds disrupt the functions of the skin and can have catastrophic consequences for an individual resulting in significant morbidity and mortality. Wound infections are common and can substantially delay healing and can result in non-healing wounds and sepsis.

View Article and Find Full Text PDF

We report the formation of mesoporous films consisting of SBA-15 particles grown directly onto substrates and their usage as catalysts in esterification of acetic acid and ethanol. The film thickness was altered between 80 nm and 750 nm by adding NH₄F to the synthesis solution. The salt also affects the formation rate of the particles, and substrates must be added during the formation of the siliceous network in the solution.

View Article and Find Full Text PDF

A hybrid catalyst consisting of Zr-doped mesoporous silica (Zr-SBA-15) supports with intergrown Cu nanoparticles was used to study the effects of a catalyst's chemical states on CO hydrogenation. The chemical state of the catalyst was altered by using tetraethyl orthosilicate (TEOS) or sodium metasilicate (SMS) as the silica precursor in the synthesis of the Zr-SBA-15 framework, and infiltration (Inf) or evaporation induced wetness impregnation (EIWI) as the Cu loading method. As a result, the silica precursor mainly affects the activity of the catalyst whereas the Cu loading method alters the selectivity of the products.

View Article and Find Full Text PDF

In situ attenuated total reflectance Fourier transform infrared spectroscopy is used to monitor the chemical evolution of the mesoporous silica SBA-15 from hydrolysis of the silica precursor to final silica condensation after the particle formation. Two silica precursors, tetraethyl orthosilicate (TEOS) or sodium metasilicate (SMS) were used, and the effects of additive (heptane and NHF) concentrations were studied. Five formation stages are identified when TEOS is used as the precursor.

View Article and Find Full Text PDF

The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and TiAl N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of TiX Al N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for [Formula: see text].

View Article and Find Full Text PDF

We develop a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti_{1-x}Al_{x}N alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy corresponding to the true equilibrium state of the system. We demonstrate that the vibrational contribution including anharmonicity and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti_{1-x}Al_{x}N alloy, lowering the maximum temperature for the miscibility gap from 6560 to 2860 K.

View Article and Find Full Text PDF

Targeted cancer therapies are currently a strong focus in biomedical research. The most common approach is to use nanocarrier-based targeting to specifically deliver conventional anticancer drugs to enhance their therapeutic efficacy, increase bioavailability, and decrease the side-effects on normal cells. A step further towards higher specificity and efficacy would be to employ specific novel drugs along with specific nanocarrier-based targeting.

View Article and Find Full Text PDF

Mesoporous silica films consisting of a monolayer of separated SBA-15 particles with unusually wide and short pores grown on silicon wafers have been fabricated in a simple single-pot-synthesis, and the formation of the films has been studied. A recipe for synthesizing mesoporous silica rods with the addition of heptane and NH4F at low temperature was used and substrates were added to the synthesis solution during the reaction. The films are ~90 nm thick, have a pore size of 10.

View Article and Find Full Text PDF

The knowledge of how to control the pore size and morphology of separated mesoporous silica particles is crucial for optimizing their performance in applications, such as molecular sieves and drug delivery systems. In this work, we have systematically studied the effects of various synthesis parameters to gain a deeper understanding of how particle morphologies can be altered. It was found that the morphology for isolated particles of SBA-15 type, with unusually short and wide pores, could be altered from rods to platelets by variations in the NH4F concentration.

View Article and Find Full Text PDF

Immobilization of enzymes usually improves the recyclability and stability and can sometimes also improve the activity compared to enzymes free in solution. Mesoporous silica is a widely studied material as host for immobilized enzymes because of its large internal surface area and tunable pores. It has previously been shown that the pore size is critical both for the loading capacity and for the enzymatic activity; however, less focus has been given to the influence of the particle size.

View Article and Find Full Text PDF

In nanomedicine, physicochemical properties of the nanocarrier affect the nanoparticle's pharmacokinetics and biodistribution, which are also decisive for the passive targeting and nonspecific cellular uptake of nanoparticles. Size and surface charge are, consequently, two main determining factors in nanomedicine applications. Another important parameter which has received much less attention is the morphology (shape) of the nanocarrier.

View Article and Find Full Text PDF

We review results of recent combined theoretical and experimental studies of TiAlN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of compositions and temperatures where the spinodal decomposition takes place.

View Article and Find Full Text PDF

Dispersed SBA-15 rods have been synthesized with varying lengths, widths, and pore sizes in a low-temperature synthesis in the presence of heptane and NH(4)F. The pore size of the material can systematically be varied between 11 and 17 nm using different hydrothermal treatment times and/or temperatures. The particle length (400-600 nm) and width (100-400 nm) were tuned by varying the HCl concentration.

View Article and Find Full Text PDF

Herein we report on the extraordinary thermal stability of approximately 35 nm Mg-nanograins that constitute the matrix of a Ti(2)AlC-Mg composite that has previously been shown to have excellent mechanical properties. The microstructure is so stable that heating the composite three times to 700 degrees C, which is 50 degrees C over the melting point of Mg, not only resulted in the repeated melting of the Mg, but surprisingly and within the resolution of our differential scanning calorimeter, did not lead to any coarsening. The reduction in the Mg melting point due to the nanograins was approximately 50 degrees C.

View Article and Find Full Text PDF