Background: In this pilot study we evaluated the performance of a substitute CT (s-CT) image derived from MR data of the brain, as a basis for optimization of intensity modulated rotational therapy, final dose calculation and derivation of reference images for patient positioning.
Methods: S-CT images were created using a Gaussian mixture regression model on five patients previously treated with radiotherapy. Optimizations were compared using D max, D min, D median and D mean measures for the target volume and relevant risk structures.
Int J Radiat Oncol Biol Phys
April 2012
Background: It is well-known that magnetic resonance imaging (MRI) is preferable to computed tomography (CT) in radiotherapy target delineation. To benefit from this, there are two options available: transferring the MRI delineated target volume to the planning CT or performing the treatment planning directly on the MRI study. A precondition for excluding the CT study is the possibility to define internal structures visible on both the planning MRI and on the images used to position the patient at treatment.
View Article and Find Full Text PDFBackground: Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data.
View Article and Find Full Text PDFBackground: In the present work we compared the spatial uncertainties associated with a MR-based workflow for external radiotherapy of prostate cancer to a standard CT-based workflow. The MR-based workflow relies on target definition and patient positioning based on MR imaging. A solution for patient transport between the MR scanner and the treatment units has been developed.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
June 2009
Purpose: To introduce a novel technology arrangement in an integrated environment and outline the logistics model needed to incorporate dedicated magnetic resonance (MR) imaging in the radiotherapy workflow. An initial attempt was made to analyze the value and feasibility of MR-only imaging compared to computed tomography (CT) imaging, testing the assumption that MR is a better choice for target and healthy tissue delineation in radiotherapy.
Methods And Materials: A 1.
In energy modulated electron therapy a large fraction of the segments will be arranged as abutting segments where inhomogeneities in segment matching regions must be kept as small as possible. Furthermore, the output variation between different segments should be minimized and must in all cases be well predicted. For electron therapy with add-on collimators, both the electron MLC (eMLC) and the photon MLC (xMLC) contribute to these effects when an xMLC tracking technique is utilized to reduce the x-ray induced leakage.
View Article and Find Full Text PDFElectron IMRT treatments have the potential to reduce the integral dose due to the limited range of the electrons. However, bremsstrahlung produced in the scattering foils could penetrate an added electron MLC (eMLC), thus producing an unmodulated dose contribution that could become unacceptable in electron IMRT treatments. To limit this bremsstrahlung contribution, the photon MLC (xMLC) was used to track the eMLC, but with a margin to avoid penumbra widening through partial screening of the effective electron source.
View Article and Find Full Text PDFThe aim of this study was to explore the possibilities of using multileaf-collimated electron beams for advanced radiation therapy with conventional scattering foil flattened beams. Monte Carlo simulations were performed with the aim to improve electron beam characteristics and enable isocentric multileaf collimation. The scattering foil positions, monitor chamber thickness, the MLC location and the amount of He in the treatment head were optimized for three common commercial accelerators.
View Article and Find Full Text PDFIn general, electron beams from conventional accelerators using applicators with lead alloy inserts are not suitable for advanced conformal radiation therapy. However, interesting electron treatments have been demonstrated on a few advanced accelerators. These accelerators have been equipped with helium filled treatment heads and computer controlled MLCs that produce clinically useful energy modulated electron beams or mixed photon electron beams in an automated sequence.
View Article and Find Full Text PDF