The pH of polar ice is important for the stability and mobility of impurities in ice cores and can be strongly influenced by volcanic eruptions or anthropogenic emissions. We present a simple optical method for continuous determination of acidity in ice cores based on spectroscopically determined color changes of two common pH-indicator dyes, bromophenol blue, and chlorophenol red. The sealed-system method described here is not equilibrated with CO, making it simpler than existing methods for pH determination in ice cores and offering a 10-90% peak response time of 45 s and a combined uncertainty of 9%.
View Article and Find Full Text PDFPhosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO4(3-) and has biological, terrestrial, and marine emission sources. Thus PO4(3-) detected in ice cores has the potential to be an important tracer for biological activity in the past.
View Article and Find Full Text PDF