Publications by authors named "Magnus B Widegren"

Precise photochemical control, using two-photon excitation (2PE), of the timing and location of activation of glutamate is useful for studying the molecular and cellular physiology of the brain. Antenna-based light harvesting strategies represent a general method to increase the sensitivity to 2PE of otherwise insensitive photoremovable protecting groups (PPGs). This was applied to the most commonly used form of "caged" glutamate, MNI-Glu.

View Article and Find Full Text PDF

Manganese catalysed ester reduction using ethanol as a hydrogen transfer agent in place of dihydrogen is reported. High yields can be achieved for a range of substrates using 1 mol% of a Mn(i) catalyst, with an alkoxide promoter. The catalyst is derived from a tridentate P,N,N ligand.

View Article and Find Full Text PDF

A manganese-catalyzed hydrogenation of esters has been accomplished with TONs up to 1000, using cheap, environmentally benign, potassium carbonate and simple alcohols as activator and solvent, respectively. The weakly basic conditions lead to good functional group tolerance and enable the hydrogenation of enantiomerically enriched α-chiral esters with essentially no loss of stereochemical integrity.

View Article and Find Full Text PDF

Representative tertiary amines were linked to the 8-cyano-7-hydroxyquinolinyl (CyHQ) photoremovable protecting group (PPG) to create photoactivatable forms suitable for use in studying cell physiology. The photoactivation of tamoxifen and 4-hydroxytamoxifen, which can be used to activate Cre recombinase and CRISPR-Cas9 gene editing, demonstrated that highly efficient release of bioactive molecules could be achieved through one- and two-photon excitation (1PE and 2PE). CyHQ-protected anilines underwent a photoaza-Claisen rearrangement instead of releasing amines.

View Article and Find Full Text PDF

A new hydrogenation catalyst based on a manganese complex of a chiral P,N,N ligand has been found to be especially active for the hydrogenation of esters down to 0.1 mol % catalyst loading, and gives up to 97 % ee in the hydrogenation of pro-chiral deactivated ketones at 30-50 °C.

View Article and Find Full Text PDF

Spatio-temporal release of biologically relevant small molecules provides exquisite control over the activation of receptors and signaling pathways. This can be accomplished via a photochemical reaction that releases the desired small molecule in response to irradiation with light. A series of biologically-relevant signaling molecules (serotonin, octopamine, capsaicin, N-vanillyl-nonanoylamide, estradiol, and tyrosine) that contain a phenol moiety were conjugated to the 8-bromo-7-hydroxyquinolinyl (BHQ) or 8-cyano-7-hydroxyquinolinyl (CyHQ) photoremovable protecting groups (PPGs).

View Article and Find Full Text PDF