This paper presents a novel method for accelerating the computationally intensive process of point-based holography using consumer grade hardware. By leveraging the parallel processing capabilities of graphics processing units (GPUs) and implementing optimization techniques, the proposed method significantly reduces the time required to generate complex holograms. A comprehensive analysis - including benchmarks and comparative studies - demonstrates the efficiency and effectiveness of this approach.
View Article and Find Full Text PDFThe reconstruction and novel view synthesis of dynamic scenes recently gained increased attention. As reconstruction from large-scale multi-view data involves immense memory and computational requirements, recent benchmark datasets provide collections of single monocular views per timestamp sampled from multiple (virtual) cameras. We refer to this form of inputs as monocularized data.
View Article and Find Full Text PDFIn this paper, we propose a wavelet-based video codec specifically designed for VR displays that enables real-time playback of high-resolution 360° videos. Our codec exploits the fact that only a fraction of the full 360° video frame is visible on the display at any time. To load and decode the video viewport-dependently in real time, we make use of the wavelet transform for intra- as well as inter-frame coding.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
May 2022
In this paper we propose omnidirectional galvanic vestibular stimulation (GVS) to mitigate cybersickness in virtual reality applications. One of the most accepted theories indicates that Cybersickness is caused by the visually induced impression of ego motion while physically remaining at rest. As a result of this sensory mismatch, people associate negative symptoms with VR and sometimes avoid the technology altogether.
View Article and Find Full Text PDFOrder selection of autoregressive processes is an active research topic in time series analysis, and the development and evaluation of automatic order selection criteria remains a challenging task for domain experts. We propose a visual analytics approach, to guide the analysis and development of such criteria. A flexible synthetic model generator-combined with specialized responsive visualizations-allows comprehensive interactive evaluation.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
May 2015
We propose the computation of a perceptual motion blur in videos. Our technique takes the predicted eye motion into account when watching the video. Compared to traditional motion blur recorded by a video camera our approach results in a perceptual blur that is closer to reality.
View Article and Find Full Text PDFIn this paper, we present and investigate an approach to fast multilabel color image segmentation using convex optimization techniques. The presented model is in some ways related to the well-known Mumford-Shah model, but deviates in certain important aspects. The optimization problem has been designed with two goals in mind.
View Article and Find Full Text PDFIEEE Comput Graph Appl
September 2015
Electroencephalography (EEG) is a novel modality for investigating perceptual graphics problems. Until recently, EEG has predominantly been used for clinical diagnosis, in psychology, and by the brain-computer-interface community. Researchers are extending it to help understand the perception of visual output from graphics applications and to create approaches based on direct neural feedback.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2013
Display resolution is frequently exceeded by available image resolution. Recently, apparent display resolution enhancement (ADRE) techniques show how characteristics of the human visual system can be exploited to provide super-resolution on high refresh rate displays. In this paper, we address the problem of generalizing the ADRE technique to conventional videos of arbitrary content.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2012
The 3D visualization of astronomical nebulae is a challenging problem since only a single 2D projection is observable from our fixed vantage point on Earth. We attempt to generate plausible and realistic looking volumetric visualizations via a tomographic approach that exploits the spherical or axial symmetry prevalent in some relevant types of nebulae. Different types of symmetry can be implemented by using different randomized distributions of virtual cameras.
View Article and Find Full Text PDFIEEE Comput Graph Appl
March 2015
Using measurements of real-world samples of metals, the proposed approach verifies predictions of bidirectional reflectance distribution function (BRDF) models. It employs ellipsometry to verify both the actual polarizing effect and the overall reflectance behavior of the metallic surfaces.
View Article and Find Full Text PDFGeneration of synthetic datasets is a common practice in many research areas. Such data is often generated to meet specific needs or certain conditions that may not be easily found in the original, real data. The nature of the data varies according to the application area and includes text, graphs, social or weather data, among many others.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2011
Traditional optical flow algorithms rely on consecutive short-exposed images. In this work, we make use of an additional long-exposed image for motion field estimation. Long-exposed images integrate motion information directly in the form of motion-blur.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
May 2011
Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations.
View Article and Find Full Text PDFWe present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling.
View Article and Find Full Text PDFWe present a method to analytically compute the light distribution of triangles directly in frequency space. This allows for fast evaluation, shading, and propagation of light from 3D mesh objects using angular spectrum methods. The algorithm complexity is only dependent on the hologram resolution and the polygon count of the 3D model.
View Article and Find Full Text PDFMany problems in computer vision can be formulated as a minimization problem for an energy functional. If this functional is given as an integral of a scalar-valued weight function over an unknown hypersurface, then the sought-after minimal surface can be determined as a solution of the functional's Euler-Lagrange equation. This paper deals with a general class of weight functions that may depend on surface point coordinates as well as surface orientation.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
July 2007
By means of passive optical motion capture, real people can be authentically animated and photo-realistically textured. To import real-world characters into virtual environments, however, surface reflectance properties must also be known. We describe a video-based modeling approach that captures human shape and motion as well as reflectance characteristics from a handful of synchronized video recordings.
View Article and Find Full Text PDFThis paper presents a novel method for using programmable graphics hardware to generate fringe patterns for SLM-based holographic displays. The algorithm is designed to take the programming constraints imposed by the graphics hardware pipeline model into consideration, and scales linearly with the number of object points. In contrast to previous methods we do not have to use the Fresnel approximation.
View Article and Find Full Text PDFFrom our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes.
View Article and Find Full Text PDF