Toll-like receptors (TLRs) are important sentinels of bacterial and viral infection and thus fulfil a critical sensory role in innate immunity. Polo-like kinases (PLKs), a five membered family of Ser/Thr protein kinases, have long been studied for their role in mitosis and thus represent attractive therapeutic targets in cancer therapy. Recently, PLKs were implicated in TLR signaling in mice but the role of PLKs in TLR signaling in untransformed primary immune cells has not been addressed, even though PLK inhibitors are in clinical trials.
View Article and Find Full Text PDFBackground: The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive.
View Article and Find Full Text PDFMicroRNAs are important posttranscriptional regulators of gene expression, which have been shown to fine-tune innate immune responses downstream of pattern recognition receptor (PRR) signaling. This study identifies miR-650 as a novel PRR-responsive microRNA that is downregulated upon stimulation of primary human monocyte-derived dendritic cells (MDDCs) with a variety of different microbe-associated molecular patterns. A comprehensive target search combining in silico analysis, transcriptional profiling, and reporter assays reveals that miR-650 regulates several well-known interferon-stimulated genes, including IFIT2 and MXA.
View Article and Find Full Text PDFMyeloid differentiation 88 (MyD88) is the key signaling adapter of Toll-like and interleukin-1 receptors. Recurrent lymphoma-associated mutations, particularly Leu265Pro (L265P), within the MyD88 Toll/interleukin-1 receptor (TIR) domain sustain lymphoma cell survival due to constitutive nuclear factor κB signaling. We found that mutated TIR domains displayed an intrinsic propensity for augmented oligomerization and spontaneous formation of cytosolic Myddosome aggregates in lymphoma cell lines, mimicking the effect of dimerized TIR domains.
View Article and Find Full Text PDF