Publications by authors named "Magnanou E"

Background: While teleost fishes represent two thirds of marine vertebrates, the role of their external microbiota in relationship with their environment remains poorly studied, especially in wild populations. Hence, the interaction of their microbiota with ectoparasites is largely unknown. Microbiota can act as a protective barrier against pathogens, and/or be involved in host recognition by parasites.

View Article and Find Full Text PDF

Background: The microbiota in fish external mucus is mainly known for having a role in homeostasis and protection against pathogens, but recent evidence suggests it is also involved in the host-specificity of some ectoparasites. In this study, we investigated the influence of seasonality and environmental factors on both fish external microbiota and monogenean gill ectoparasites abundance and diversity and assessed the level of covariations between monogenean and bacterial communities across seasons. To do so, we assessed skin and gill microbiota of two sparid species, Oblada melanura and Diplodus annularis, over a year and collected their specific monogenean ectoparasites belonging to the Lamellodiscus genus.

View Article and Find Full Text PDF

Habenulae asymmetries are widespread across vertebrates and analyses in zebrafish, the reference model organism for this process, have provided insight into their molecular nature, their mechanisms of formation and their important roles in the integration of environmental and internal cues with a variety of organismal adaptive responses. However, the generality of the characteristics identified in this species remains an open question, even on a relatively short evolutionary scale, in teleosts. To address this question, we have characterized the broad organization of habenulae in the Atlantic salmon and quantified the asymmetries in each of the identified subdomains.

View Article and Find Full Text PDF

Background: Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species.

View Article and Find Full Text PDF

Monogeneans are highly diverse fish ectoparasites with a direct life cycle, widely distributed, and are known to generally display strict host specificity. Factors related to the hosts and the parasite have been suggested to explain this high specificity. Monogeneans have also been observed to colonise fish species not in their natural host range under experimental conditions.

View Article and Find Full Text PDF

Background And Aims: Abiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics.

View Article and Find Full Text PDF

Smoltification prepares juvenile Atlantic salmon (Salmo salar) for downstream migration. Dramatic changes characterize this crucial event in the salmon's life cycle, including increased gill Na/K-ATPase activity (NKA) and plasma hormone levels. The triggering of smoltification relies on photoperiod and is modulated by temperature.

View Article and Find Full Text PDF

Microorganisms are an important component in shaping the evolution of hosts and as such, the study of bacterial communities with molecular techniques is shedding light on the complexity of symbioses between bacteria and vertebrates. Teleost fish are a heterogeneous group that live in a wide variety of habitats, and thus a good model group to investigate symbiotic interactions and their influence on host biology and ecology. Here we describe the microbiota of thirteen teleostean species sharing the same environment in the Mediterranean Sea and compare bacterial communities among different species and body sites (external mucus, skin, gills, and intestine).

View Article and Find Full Text PDF

Next-generation sequencing methods are increasingly used to identify eukaryotic, unicellular and multicellular symbiont communities within hosts. In this study, we analyzed the non-specific reads obtained during a metabarcoding survey of the bacterial communities associated to three different tissues collected from 13 wild Mediterranean teleost fish species. In total, 30 eukaryotic genera were identified as putative parasites of teleosts, associated to skin mucus, gills mucus and intestine: 2 ascomycetes, 4 arthropods, 2 cnidarians, 7 nematodes, 10 platyhelminthes, 4 apicomplexans, 1 ciliate as well as one order in dinoflagellates (Syndiniales).

View Article and Find Full Text PDF

Background: The Arctic charr (Salvelinus alpinus) has a highly seasonal feeding cycle that comprises long periods of voluntary fasting and a short but intense feeding period during summer. Therefore, the charr represents an interesting species for studying appetite-regulating mechanisms in fish.

Results: In this study, we compared the brain transcriptomes of fed and feed deprived charr over a 4 weeks trial during their summer feeding season.

View Article and Find Full Text PDF

The Arctic charr (Salvelinus alpinus L.) inhabits fresh water ecosystems of the high North. The species has developed a strong phenotypic plasticity and variability in life history characteristics which has made this species an attractive model for investigations on phenotype plasticity, morph formation and ecological speciation.

View Article and Find Full Text PDF

Photoperiod plays an essential role in the synchronization of metabolism, physiology, and behavior to the cyclic variations of the environment. In vertebrates, information is relayed by the pineal cells and translated into the nocturnal production of melatonin. The duration of this signal corresponds to the duration of the night.

View Article and Find Full Text PDF

Melatonin is an important component of the vertebrates circadian system, synthetized from serotonin by the successive action of the arylalkylamine N-acetyltransferase (Aanat: serotonin→N-acetylserotonin) and acetylserotonin-O-methyltransferase (Asmt: N-acetylserotonin→melatonin). Aanat is responsible for the daily rhythm in melatonin production. Teleost fish are unique because they express two Aanat genes, aanat1 and aanat2, mainly expressed in the retina and pineal gland, respectively.

View Article and Find Full Text PDF

All biological functions in vertebrates are synchronized with daily and seasonal changes in the environment by the time keeping hormone melatonin. Its nocturnal surge is primarily due to the rhythmic activity of the arylalkylamine N-acetyl transferase AANAT, which thus became the focus of many investigations regarding its evolution and function. Various vertebrate isoforms have been reported from cartilaginous fish to mammals but their origin has not been clearly established.

View Article and Find Full Text PDF

The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community.

View Article and Find Full Text PDF

Melatonin (N-acetyl-5-methoxytrypamine) is the vertebrate hormone of the night: circulating levels at night are markedly higher than day levels. This increase is driven by precisely regulated increases in acetylation of serotonin in the pineal gland by arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the synthesis of melatonin. This unique essential role of AANAT in vertebrate timekeeping is recognized by the moniker the timezyme.

View Article and Find Full Text PDF

Extant rear-edge populations located in former glacial refugia remain understudied despite their high conservation value. These populations should have experienced strong genetic drift due to their small size and long isolation. Moreover, the prolonged action of isolation by distance in refugial areas should result in stronger regional spatial genetic structure (SGS) than in recolonized areas, but empirical tests of this prediction are scarce.

View Article and Find Full Text PDF

Herbivores are predicted to evolve appropriate mechanisms to process the plant secondary compounds (PSCs) in their diet, and these mechanisms are likely specific to particular suites of PSCs. Changes in diet composition over evolutionary time should select for appropriate alterations in metabolism of the more recent dietary components. We investigated differences in gene expression profiles in the liver with respect to prior ecological and evolutionary experience with PSCs in the desert woodrat, Neotoma lepida.

View Article and Find Full Text PDF

Melatonin contributes to synchronizing major biological and behavioral functions with cyclic changes in the environment. Arylalkylamine N-acetyltransferase (AANAT) is responsible for a daily rhythm in melatonin secretion. Teleost possess two enzyme forms, AANAT1 and AANAT2, preferentially expressed in the retina and the pineal gland, respectively.

View Article and Find Full Text PDF

Arylalkylamine N-acetyltransferase-2 (AANAT2) is the enzyme responsible for the rhythmic production of the time-keeping hormone melatonin. It plays a crucial role in the synchronization of biological functions with changes in the environment. Annual and daily fluctuations in light are known to be key environmental factors involved in such synchronization.

View Article and Find Full Text PDF

Detoxification enzymes play a key role in plant-herbivore interactions, contributing to the on-going evolution of ecosystem functional diversity. Mammalian detoxification systems have been well studied by the medical and pharmacological industries to understand human drug metabolism; however, little is known of the mechanisms employed by wild herbivores to metabolize toxic plant secondary compounds. Using a wild rodent herbivore, the desert woodrat (Neotoma lepida), we investigated genomic structural variation, sequence variability, and expression patterns in a multigene subfamily involved in xenobiotic metabolism, cytochrome P450 2B (CYP2B).

View Article and Find Full Text PDF

The Greater White-toothed shrew Crocidura russula is short-lived species and the phase of senescence is greatly elongated in captivity. The loss of rhythmicity of biological functions that accompanies its aging is also well documented. C.

View Article and Find Full Text PDF

Background: Laboratory conditions nullify the extrinsic factors that determine the wild expected lifespan and release the intrinsic or potential lifespan. Thus, wild animals reared in a laboratory often show an increased lifespan, and consequently an increased senescence phase. Senescence is associated with a broad suite of physiological changes, including a decreased responsiveness of the circadian system.

View Article and Find Full Text PDF

In most species daily rhythms are synchronized by the photoperiodic cycle. They are generated by the circadian system, which is made of a pacemaker, an entrainment pathway to this clock, and one or more output signals. In vertebrates, melatonin produced by the pineal organ is one of these outputs.

View Article and Find Full Text PDF

The ability of herbivores to switch diets is thought to be governed by biotransformation enzymes. To identify potential biotransformation enzymes, we conducted a large-scale study on the expression of biotransformation enzymes in herbivorous woodrats (Neotoma lepida). We compared gene expression in a woodrat population from the Great Basin that feeds on the ancestral diet of juniper to one from the Mojave Desert that putatively switched from feeding on juniper to feeding on creosote.

View Article and Find Full Text PDF