Background And Aims: Cocoa may have prebiotic effects and improve gut barrier function. However, it remains unclear whether dark chocolate can reduce lipopolysaccharide (LPS) levels in patients with metabolic dysfunction-associated steatohepatitis (MASH). This study aims to evaluate the effect of dark chocolate compared to milk chocolate on endotoxemia in patients with MASH.
View Article and Find Full Text PDFElectronic cigarettes and heated tobacco products have seen significant growth in sales and usage in recent years. Initially promoted as potentially less harmful alternatives to traditional tobacco, recent scientific evidence has raised serious concerns about the risks they pose, particularly in relation to atherosclerosis. While atherosclerosis has long been associated with conventional tobacco smoking, emerging research suggests that electronic cigarettes and heated tobacco may also contribute to the development of this condition and related cardiovascular complications.
View Article and Find Full Text PDFBackground: Randomized controlled trials suggest that prophylactic doses of anticoagulants effectively prevent venous thromboembolism (VTE) in hospitalized medical patients with high thromboembolic risk. However, no prospective studies exist regarding the real-world prevalence of prophylactic anticoagulant use. This prospective study aimed to determine the rate and predictors of thromboprophylaxis in an unselected population of patients hospitalized in medical departments.
View Article and Find Full Text PDFThe combination of the unique physical properties of molybdenum disulfide (MoS) with those of gallium nitride (GaN) and related group-III nitride semiconductors have recently attracted increasing scientific interest for the realization of innovative electronic and optoelectronic devices. A deep understanding of MoS/GaN interface properties represents the key to properly tailor the electronic and optical behavior of devices based on this heterostructure. In this study, monolayer (1L) MoS was grown on GaN-on-sapphire substrates by chemical vapor deposition (CVD) at 700 °C.
View Article and Find Full Text PDFPurpose: To investigate the occurrence of arrhythmias in patients with normocalcemic (NC) primary hyperparathyroidism (PHPT) compared to both hypercalcemic PHPT patients and control subjects by means of 24-h Holter ECG.
Methods: Thirteen NCPHPT postmenopausal patients were enrolled and age-matched with 13 hypercalcemic PHPT patients and 13 controls. Every subject underwent basal ECG, 24-h Holter ECG and mineral metabolism biochemical evaluation.
J Phys Chem C Nanomater Interfaces
October 2023
Nowadays, Predictive Maintenance is a mandatory tool to reduce the cost of production in the semiconductor industry. This paper considers as a case study a critical part of the electrochemical deposition system, namely, the four Pins that hold a wafer inside a chamber. The aim of the study is to replace the schedule of replacement of Pins presently based on fixed timing (Preventive Maintenance) with a Hardware/Software system that monitors the conditions of the Pins and signals possible conditions of failure (Predictive Maintenance).
View Article and Find Full Text PDFThe importance of lead analysis in environmental matrices becomes increasingly relevant due to the anthropogenic spread of toxic species in nature. Alongside the existing analytical methods to detect lead in a liquid environment, we propose a new dry approach for lead detection and measurement based on its capture from a liquid solution by a solid sponge and subsequent quantification based on X-ray analyses. The detection method exploits the relationship between the electronic density of the solid sponge, which depends on the captured lead, and the critical angle for total reflection of the X-rays.
View Article and Find Full Text PDFThe molecular doping (MD) process is based on the deposition of dopant-containing molecules over the surface of a semiconductor substrate, followed by the thermal diffusion step. Previous studies suggest that, during the deposition, the molecules nucleate clusters, and at prolonged deposition times, they grow into self-assembled layers on the sample to be doped. Little is known about the influence of nucleation kinetics on the final properties of these layers and how they change when we modify the solution properties.
View Article and Find Full Text PDFInnovation is essential around the themes of climate change and sustainability. Commercial photovoltaics (PV) have noticeably contributed to getting to 22.1% share of the gross final energy consumption in Europe from renewable sources in 2020 but a steep further increase is urgent in the near future.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
Aluminum-doped zinc oxide (AZO) is an electrically conductive and optically transparent material with many applications in optoelectronics and photovoltaics as well as in the new field of plasmonic metamaterials. Most of its applications contemplate the use of complex and nanosized materials as substrates onto which the AZO forms the coating layer. Its morphological characteristics, especially the conformality and crystallographic structure, are crucial because they affect its opto-electrical response.
View Article and Find Full Text PDFIn this review paper, several new approaches about the 3C-SiC growth are been presented. In fact, despite the long research activity on 3C-SiC, no devices with good electrical characteristics have been obtained due to the high defect density and high level of stress. To overcome these problems, two different approaches have been used in the last years.
View Article and Find Full Text PDFMolecular Doping (MD) involves the deposition of molecules, containing the dopant atoms and dissolved in liquid solutions, over the surface of a semiconductor before the drive-in step. The control on the characteristics of the final doped samples resides on the in-depth study of the molecule behaviour once deposited. It is already known that the molecules form a self-assembled monolayer over the surface of the sample, but little is known about the role and behaviour of possible multiple layers that could be deposited on it after extended deposition times.
View Article and Find Full Text PDFWe present a method for the simulation of the kinetic evolution in the sub µs timescale for composite materials containing regions occupied by alloys, compounds, and mixtures belonging to the Ni-Si-C ternary system. Pulsed laser irradiation (pulses of the order of 100 ns) promotes this evolution. The simulation approach is formulated in the framework of the phase-field theory and it consists of a system of coupled non-linear partial differential equations (PDEs), which considers as variables the following fields: the laser electro-magnetic field, the temperature, the phase-field and the material (Ni, Si, C, C clusters and Ni-silicides) densities.
View Article and Find Full Text PDFIn this work, raw halloysite mineral from Dunino (Poland) has been characterized and tested as an efficient and low-cost adsorbent for dye removal from water. The morphology and structure of this clay were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and the chemical composition was evaluated by means of X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), and electron energy loss spectroscopy (EELS). The results showed that it is made up of both platy and tubular structures, mainly composed of Si, Al, and O.
View Article and Find Full Text PDFThe realization of stable inorganic perovskites is crucial to enable low-cost solution-processed photovoltaics. However, the main candidate material, CsPbI, suffers from a spontaneous phase transition at room temperature towards a photo-inactive orthorhombic δ-phase (yellow phase). Here we used theoretical and experimental methods to study the structural and electronic features that determine the stability of the CsPbI perovskite.
View Article and Find Full Text PDFCarbon-based top electrodes for hole-transporting-layer-free perovskite solar cells (PSCs) were made by hot press (HP) transfer of a free-standing carbon-aluminum foil at 100°C and at a pressure of 0.1 MPa on a methylammonium lead iodide (MAPbI) layer. Under these conditions, the perovskite surface was preserved from interaction with the solvent.
View Article and Find Full Text PDFSingle crystals represent a benchmark for understanding the bulk properties of halide perovskites. We have indeed studied the dielectric function of lead bromide perovskite single crystals (MAPbBr, CsPbBr and for the first time FAPbBr) by spectroscopic ellipsometry in the range of 1-5 eV while varying the temperature from 183 to 440 K. An extremely low absorption coefficient in the sub-band gap region was found, indicating the high optical quality of all three crystals.
View Article and Find Full Text PDFHalide perovskites containing a mixture of formamidinium (FA), methylammonium (MA) and cesium (Cs) cations are the actual standard for obtaining record-efficiency perovskite solar cells. Although the compositional tuning that brings to optimal performance of the devices has been largely established, little is understood on the role of even small quantities of MA or Cs in stabilizing the black phase of FAPbI while boosting its photovoltaic yield. In this paper, we use Car-Parrinello molecular dynamics in large supercells containing different ratios of FA and either MA or Cs, in order to study the structural and kinetic features of mixed perovskites at room temperature.
View Article and Find Full Text PDFQuantum confinement effects in silicon nanowires (SiNWs) are expected when their diameter is less than the size of the free exciton (with a Bohr radius ∼5 nm) in bulk silicon. However, their synthesis represents a considerable technological challenge. The vapor-liquid-solid (VLS) mechanism, mediated by metallic nanoclusters brought to the eutectic liquid state, is most widely used for its simplicity and control on the SiNWs size, shape, orientation, density, and surface smoothness.
View Article and Find Full Text PDFThis work reports on the properties of cubic silicon carbide (3C-SiC) grown epitaxially on a patterned silicon substrate composed of squared inverted silicon pyramids (ISP). This compliant substrate prevents stacking faults, usually found at the SiC/Si interface, from reaching the surface. We investigated the effect of the size of the inverted pyramid on the epilayer quality.
View Article and Find Full Text PDFWe created a blend between a TiO sponge with bimodal porosity and a Methyl-Ammonium Lead Iodide (MAPbI) perovskite. The interpenetration of the two materials is effective thanks to the peculiar sponge structure. During the early stages of the growth of the TiO sponge, the formation of 5-10 nm-large TiO auto-seeds is observed which set the micro-porosity (<5 nm) of the layer, maintained during further growth.
View Article and Find Full Text PDFA computational approach that couples molecular-dynamics (MD) and the-finite-element-method (FEM) technique is here proposed for the theoretical study of the dynamics of particles subjected to electromechanical forces. The system consists of spherical particles (modeled as micrometric rigid bodies with proper densities and dielectric functions) suspended in a colloidal solution, which flows in a microfluidic channel in the presence of a generic nonuniform variable electric field generated by electrodes. The particles are subjected to external forces (e.
View Article and Find Full Text PDF