Publications by authors named "Maglione V"

While Trisomy X syndrome is typically characterized by developmental and cognitive variations, it is not commonly associated with immunodeficiencies. We report the unique case of a 6-year-old girl with Trisomy X presenting with selective IgA deficiency, challenging the conventional understanding of this chromosomal condition. The patient exhibited recurrent respiratory infections and gastrointestinal symptoms, evaluated in the context of her genetic background of Trisomy X and significantly low levels of IgA (0.

View Article and Find Full Text PDF

Background: Platelet activation and interaction with leukocytes are crucial in inflammation. Gangliosides, sialic acid-containing glycosphingolipids, have been linked to different inflammatory conditions related to cardio- and neurodegenerative disorders. The role of gangliosides in platelet and leukocyte function, although reported, still needs further investigation.

View Article and Find Full Text PDF
Article Synopsis
  • * Research shows that reducing ADAM10 levels in HD mouse models can reverse spine loss and synaptic issues in the hippocampus, demonstrating its role in maintaining synaptic integrity.
  • * The study suggests that inhibiting ADAM10 alongside targeting the TrkB signaling pathway could be an effective strategy for preventing cognitive decline and enhancing synaptic function in HD.
View Article and Find Full Text PDF

Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized.

View Article and Find Full Text PDF

Sphingolipids exert important roles within the cardiovascular system and related diseases. Perturbed sphingolipid metabolism was previously reported in cerebral and renal tissues of spontaneously hypertensive rats (SHR). Specific defects related to the synthesis of sphingolipids and to the metabolism of Sphingosine-1-Phospahte (S1P) were exclusively identified in the stroke-prone (SHRSP) with the respect to the stroke-resistant (SHRSR) strain.

View Article and Find Full Text PDF
Article Synopsis
  • Loss-of-function mutations in the Kv1.1 gene lead to episodic ataxia type 1 (EA1), causing symptoms like cerebellar dysfunction, ataxic attacks, muscle cramps, and epilepsy.
  • Current treatments lack drugs that can counteract functional defects in Kv1.1 channels, making precision medicine for EA1 unfeasible.
  • The study found that niflumic acid (NFA), an existing analgesic, enhances Kv1.1 channel activity and mitigates EA1 symptoms, showing promise as a therapeutic agent and a model for drug discovery.
View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity.

View Article and Find Full Text PDF

Rett syndrome (RTT, online MIM 312750) is a devastating neurodevelopmental disorder characterized by motor and cognitive disabilities. It is mainly caused by pathogenetic variants in the X-linked gene, encoding an epigenetic factor crucial for brain functioning. Despite intensive studies, the RTT pathogenetic mechanism remains to be fully elucidated.

View Article and Find Full Text PDF

Huntington's disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions.

View Article and Find Full Text PDF

Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease.

View Article and Find Full Text PDF

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K channel TMEM175.

View Article and Find Full Text PDF

Multisystemic smooth muscle dysfunction syndrome (MSMDS, OMIM # 613834) is a rare autosomal dominant condition caused by pathogenetic variants of ACTA2 gene that result in impaired muscle contraction. MSMDS is characterized by an increased susceptibility to aneurismal dilatations and dissections, patent ductus arteriosus, early onset coronary artery disease, congenital mydriasis, chronic interstitial lung disease, hypoperistalsis, hydrops of gall bladder, and hypotonic bladder. Here, we report an early diagnosis of a MSMDS related to ACTA2 p.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Gliomas are the most common primary malignant brain tumors, with glioblastoma (GBM) being the most aggressive type, characterized by areas of low oxygen that contribute to treatment failure.
  • Hypoxia facilitates various processes in GBM that promote tumor growth and resistance, highlighting the need for new therapeutic targets to prevent relapse.
  • Research reveals that inhibiting polysialic acid (PSA) in GBM cells under low oxygen levels can reduce cell migration and affect differentiation, suggesting that PSA could be a potential target for developing new treatments for GBM.
View Article and Find Full Text PDF
Article Synopsis
  • Pulmonary hypertension (PH) is a serious condition linked to connective tissue diseases (CTD), and this study explores the potential of inducible co-stimulator (ICOS) and its ligand (ICOS-L) as biomarkers for diagnosing PH in these patients.
  • A total of 109 patients were studied, including those with CTD alone, CTD with pulmonary arterial hypertension (PAH), and PAH alone, and it was found that PAH patients had significantly higher levels of ICOS and ICOS-L compared to CTD patients.
  • The research indicates that elevated levels of ICOS and ICOS-L are strongly associated with PAH diagnosis, regardless of patient age, gender, or kidney function, suggesting these markers could be valuable
View Article and Find Full Text PDF

Huntington's disease (HD) is a rare hereditary neurodegenerative disorder characterized by multiple metabolic dysfunctions including defects in mitochondrial homeostasis and functions. Although we have recently reported age-related changes in the respiratory capacities in different brain areas in HD mice, the precise mechanisms of how mitochondria become compromised in HD are still poorly understood. In this study, we investigated mRNA and protein levels of selected subunits of electron transport system (ETS) complexes and ATP-synthase in the cortex and striatum of symptomatic R6/2 mice.

View Article and Find Full Text PDF
Article Synopsis
  • UCP2 is crucial for protecting against vascular diseases linked to high salt intake, as shown in various animal models and human studies.
  • Reducing UCP2 levels worsens vascular health and increases damage in models prone to stroke, while increasing UCP2 levels helps mitigate these harmful effects.
  • UCP2 promotes autophagy and mitophagy in response to high salt and oxidative stress, which helps maintain cell viability; when UCP2 is silenced, these protective processes are disrupted, but introducing an autophagy inducer can reverse some damage.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients.

View Article and Find Full Text PDF
Article Synopsis
  • Sphingolipids, key molecules in cell membranes affecting blood vessel health, are linked to various vascular disorders but their role in hypertension-related brain and kidney damage is unclear.
  • This study compared sphingolipid metabolism in hypertensive rat strains (SHRSP and SHRSR) with normotensive rats (WKY) and found significant metabolic alterations in both the brain and kidneys of hypertensive rats.
  • Specific issues, like reduced enzyme expression related to sphingosine-1-phosphate metabolism, were unique to the SHRSP strain, indicating potential pathways for future research and therapies targeting hypertension-related organ damage.
View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings.

View Article and Find Full Text PDF

Identification of molecules able to promote neuroprotective mechanisms can represent a promising therapeutic approach to neurodegenerative disorders including Huntington's disease. Curcumin is an antioxidant and neuroprotective agent, even though its efficacy is limited by its poor absorption, rapid metabolism, systemic elimination, and limited blood-brain barrier (BBB) permeability. Herein, we report on novel biodegradable curcumin-containing nanoparticles to favor the compound delivery and potentially enhance its brain bioavailability.

View Article and Find Full Text PDF

Mitochondrial dysfunction is crucially involved in aging and neurodegenerative diseases, such as Huntington's Disease (HD). How mitochondria become compromised in HD is poorly understood but instrumental for the development of treatments to prevent or reverse resulting deficits. In this paper, we investigate whether oxidative phosphorylation (OXPHOS) differs across brain regions in juvenile as compared to adult mice and whether such developmental changes might be compromised in the R6/2 mouse model of HD.

View Article and Find Full Text PDF

The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q), which correlated with a defective stress response to proteasome inhibition.

View Article and Find Full Text PDF

Emerging evidence indicates that Huntington's disease (HD) may be described as multi-organ pathology. In this context, we and others have contributed to demonstrate that the disease is characterized by an impairment of the homeostasis of gastro-intestinal (GI) tract. Sphingolipids represent a class of molecules involved in the regulation and maintenance of different tissues and organs including GI system.

View Article and Find Full Text PDF

The tubulinopathies refer to a wide range of brain malformations caused by mutations in one of the seven genes encoding different tubulin's isotypes. The β-tubulin isotype III (TUBB3) gene has a primary function in nervous system development and axon generation and maintenance, due to its neuron-specific expression pattern. A recurrent heterozygous mutation, c.

View Article and Find Full Text PDF