Publications by authors named "Magin Lapuerta"

Article Synopsis
  • - Alcohols derived from biological waste and renewable electricity are emerging as eco-friendly alternatives for transportation fuels, requiring only minor modifications to engines for use in vehicles.
  • - The research utilizes terahertz (THz) and gigahertz (GHz) spectroscopies to analyze a range of fuels including diesel, ethanol, and n-butanol, ultimately enhancing fuel property modeling by introducing new Debye parameters for better accuracy.
  • - Findings indicate a linear correlation between alcohol concentration and dielectric properties, though challenges remain in accurately modeling low alcohol concentrations, suggesting avenues for future research in fuel characteristics.
View Article and Find Full Text PDF

The use of conventional and advanced biofuels is part of the efforts to reduce greenhouse gases and harmful exhaust gaseous emissions. This study investigates the unregulated emissions in gas and particles from a Euro 6b diesel engine, operated with four unconventional and advanced biofuels (two hydrogenated terpenic biofuels, a polyoxymethylene dimethyl ether, and a glycerol-derived biofuel), blended with diesel fuel and pure hydrotreated vegetable oil as base biofuel. The engine was operated following WLTC starting from cold-engine conditions.

View Article and Find Full Text PDF

Many concerns, such as economic and technical viability and social and ethical aspects, must be considered for a feedstock selection for advanced biofuels. Industrialized countries promote the use of industrial waste or by-products for this purpose. In particular, turpentine has several properties which make it an attractive source for biofuels, including its possible industrial waste origin.

View Article and Find Full Text PDF

Residues from the wine industry constitute an abundant feedstock for biodiesel production in wine-producing countries. The use of grapeseed oil, together with bioethanol obtained from distillation of wine surplus or grape skins and stalks and wine lees, as reagents in the transesterification reaction, results in a mixture of fatty acid ethyl esters (FAEE), which is a fully renewable, autochthonous, and waste-derived biofuel. In this work, a blend of FAEE produced from grape seed oil with diesel fuel was selected based on a study of fuel properties, and the optimal blend, with 30% v/v of FAEE, was tested in a Euro 6 engine following the Worldwide harmonized Light-duty Test Cycle (WLTC) and a Real Driving Emissions Cycle (RDE), as required in the new certification procedures.

View Article and Find Full Text PDF

Abstract: In Europe, recent regulations on advanced biofuels have prompted a search for new fuel sources and the development of synthesis methods meeting the demanding specifications of the sector. However, in developing countries such as Algeria, where a significant stock of frying oil is unused, the use of diesel engines powered with waste-oil-derived biofuels must be explored. In this work, the variables related to the transesterification reaction from this frying oil with ethanol are analyzed using response surface methodology.

View Article and Find Full Text PDF

Wine industry generates a large amount of biowaste, such as grape marc and wine lees, which is considered in the Directive (EU) 2018/2001 as an adequate feedstock to produce advanced biofuels. Grapeseed oil fatty acid ethyl esters (FAEEs) can be obtained from oil extracted from grape marc and bioethanol distilled from wine lees or wine surplus. Although FAEE still has no specific standard, grapeseed oil FAEE would fulfill all of the properties set by the standard EN 14214, except oxidation stability.

View Article and Find Full Text PDF

The search for renewable fuels or components which may improve or replace fossil fuels is an important step towards a sustainable future. In particular, the pine oleoresin produced by conifer trees, which is composed by turpentine oil and non-volatile rosin, may be transformed into alternative fuels. In this work, combustion of six molecules which can be obtained from oleoresin either by distillation (i.

View Article and Find Full Text PDF

Black carbon (BC) aerosols in the atmosphere strongly affect direct radiative forcing and climate, not only while suspended in the atmosphere but also after deposition onto high albedo surfaces. Snow surfaces are especially sensitive to BC deposition, because of their high surface albedo and additional positive feedbacks further enhance faster snowpack melting caused by BC deposition, resulting in modifications in water resources and recession of glaciers. For the analysis of BC deposition on snow, a precise quantification of BC mass is needed.

View Article and Find Full Text PDF

Open-air burning of agricultural wastes from crops like corn, rice, sorghum, sugar cane, and wheat is common practice in Mexico, which in spite limiting regulations, is the method to eliminate such wastes, to clear the land for further harvesting, to control grasses, weeds, insects, and pests, and to facilitate nutrient absorption. However, this practice generates air pollution and contributes to the greenhouse effect. Burning of straws derived from the said crops was emulated in a controlled combustion chamber, hence determining emission factors for particles, black carbon, carbon dioxide, carbon monoxide, and nitric oxide throughout the process, which comprised three apparent stages: pre-ignition, flaming, and smoldering.

View Article and Find Full Text PDF

Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting.

View Article and Find Full Text PDF

The objective of this research was to determine emission factors (EF) for particulate matter (PM), combustion gases and particle size distribution generated by the combustion of Eucalyptus globulus (EG), Nothofagus obliqua (NO), both hardwoods, and Pinus radiata (PR), softwood, using a controlled combustion chamber (3CE). Additionally, the contribution of the different emissions stages associated with the combustion of these wood samples was also determined. Combustion experiments were performed using shaving size dried wood (0% humidity).

View Article and Find Full Text PDF

Biodiesel fuels (methyl or ethyl esters derived from vegetables oils and animal fats) are currently being used as a means to diminish the crude oil dependency and to limit the greenhouse gas emissions of the transportation sector. However, their physical properties are different from traditional fossil fuels, this making uncertain their effect on new, electronically controlled vehicles. Density is one of those properties, and its implications go even further.

View Article and Find Full Text PDF

Different agglomerates composed by a variable number of spherical primary particles corresponding to extreme and intermediate values of fractal dimension (D(f)=1, D(f)=2 and D(f)=3) are analysed in this work. In each case, the moment of inertia, diameter of gyration and prefactor of the power-law relationship are determined as a function of the number of composing primary particles. The obtained results constitute the geometrical data base for the development of a method for the determination of the fractal dimension of individual agglomerates from their planar projections, although it is not the aim of this paper to describe the method itself.

View Article and Find Full Text PDF

Biofuels composed by fatty acid methyl esters are widely used as partly substituting fuels for diesel fossil fuels. Additionally, it is expected that the diesel biofuel norms will be extended to ethyl esters produced from bioethanol in the upcoming years. A precise knowledge of the standard enthalpy of formation is necessary for the calculation of some parameters useful for the analysis of the combustion process and emissions of a diesel engine operating with different fuels, such as the heating value, the adiabatic flame temperature or the kinetic mechanisms.

View Article and Find Full Text PDF

Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed.

View Article and Find Full Text PDF

Soot agglomerates emitted by diesel engines are composed of primary particle forming irregular clusters. Such irregularity can be quantified by the fractal dimension, whose determination depends on certain parameters not unanimously established, such as the prefactor of the power law relationship. Mean values of the fractal dimension of large collections of agglomerates are usually determined in literature by least-square regression fittings to the power law relationship.

View Article and Find Full Text PDF