Adult neurogenesis is modulated by many G-coupled receptors but the precise mechanism remains elusive. A key step for maintaining the population of neural stem cells in the adult is asymmetric cell division (ACD), a process which entails the formation of two evolutionarily conserved protein complexes that establish the cell polarity and spindle orientation. Since ACD is extremely difficult to monitor in stratified tissues such as the vertebrate brain, we employed human neural progenitor cell lines to examine the regulation of the polarity and spindle orientation complexes during neuronal differentiation.
View Article and Find Full Text PDFSeveral RGS (regulator of G protein signaling) proteins are known to be upregulated in a variety of tumors but their roles in modulating tumorigenesis remain undefined. Since the expression of RGS20 is elevated in metastatic melanoma and breast tumors, we examined the effects of RGS20 overexpression and knockdown on the cell mobility and adhesive properties of different human cancer cell lines, including cervical cancer HeLa, breast adenocarcinoma MDA-MB-231, and non-small cell lung carcinoma H1299 and A549 cells. Expression of RGS20 enhanced cell aggregation, migration, invasion and adhesion as determined by hanging drop aggregation, wound healing, transwell chamber migration and invasion assays.
View Article and Find Full Text PDFBesides serving as signal terminators for G protein pathways, several regulators of G protein signaling (RGS) can also modulate cell proliferation. RGS19 has previously been shown to enhance Akt signaling despite impaired Ras signaling. The present study examines the mechanism by which RGS19 inhibits Ras signaling.
View Article and Find Full Text PDFAgonists of CCR1 contribute to hypersensitivity reactions and atherosclerotic lesions, possibly via the regulation of the transcription factor STAT3. CCR1 was demonstrated to use pertussis toxin-insensitive Gα(14/16) to stimulate phospholipase Cβ and NF-κB, whereas both Gα(14) and Gα(16) are also capable of activating STAT3. The coexpression of CCR1 and Gα(14/16) in human THP-1 macrophage-like cells suggests that CCR1 may use Gα(14/16) to induce STAT3 activation.
View Article and Find Full Text PDFRegulators of G protein signaling (RGS proteins) serve as GTPase activating proteins for the signal transducing Gα subunits. RGS19, also known as Gα-interacting protein (GAIP), has been shown to subserve other functions such as the regulation of macroautophagy and growth factor signaling. We have recently demonstrated that the expression of RGS19 in human embryonic kidney (HEK) 293 cells resulted in the disruption of serum-induced mitogenic response along the classical Ras/Raf/MEK/ERK pathway.
View Article and Find Full Text PDFMelatonin receptors have previously been shown to elicit cellular signaling through the hematopoietic-specific G protein, G(16) . In the present study, we show that this functional coupling elicited biphasic stimulatory phosphorylation on STAT3 in recombinant MT(1) /Gα(16) cells and native Jurkat T cells (endogenously expressing MT(1) and Gα(16) ), with maximal Ser(727) phosphorylation occurring at 15min, while marked Tyr(705) phosphorylation became detectable only upon agonist treatment for 4 hr or more. By employing signal transducer and activator of transcription 3 (STAT3) phosphorylation-resistant mutants (STAT3-Y705F and STAT3-S727A), we further showed that the receptor-mediated STAT3 phosphorylations at Ser(727) and Tyr(705) were independent of each other.
View Article and Find Full Text PDFMany G protein-coupled receptors (GPCRs) are known to modulate cell growth and differentiation by stimulating the extracellular signal-regulated protein kinases (ERKs). In growth factor signaling, ERKs are typically stimulated through an elaborate network of modules consisting of adaptors, protein kinases, and the small GTPase Ras. The mechanism by which G protein signals tap into the ERK signaling pathway has thus far remain elusive.
View Article and Find Full Text PDFAgonists of CC chemokine receptor CCR1 contribute to the pathogenesis of autoimmune and other inflammatory diseases, possibly via the regulation of the transcription factor NF-kappaB. CCR1 and CCR2b have been demonstrated to use PTX-insensitive Galpha(14) and Galpha(16) to stimulate PLCbeta in cotransfected cells, and Galpha(14) and Galpha(16) are capable of activating NF-kappaB. The coexpression of Galpha(14), Galpha(16), and CCR1 in human monocytic THP-1 cells suggests that CCR1 may use Galpha(14) or Galpha(16) to induce NF-kappaB activation.
View Article and Find Full Text PDFChemokines are known to regulate the chemotaxis of leukocytes and play an important role in immunological processes. Chemokine receptors are widely distributed in hematopoietic cells and are often co-localized with the hematopoietic-specific G(16) and its close relative, G(14). Yet, many chemokine receptors utilize pertussis toxin-sensitive G(i) proteins for signaling.
View Article and Find Full Text PDFChemokines regulate the chemotaxis, development, and differentiation of many cell types enabling the regulation of routine immunosurveillance and immunological adaptation. CC chemokine receptor 1 (CCR1) is the target of 11 chemokines. This promiscuity of receptor-ligand interactions and the potential for functional redundancy has led us to investigate the selective activation of CCR1-coupled pathways by known CCR1 agonists.
View Article and Find Full Text PDF