Background: Gram negative bacteria possess different secretion systems to export proteins to the extracellular medium. The simplest one, type I secretion system (T1SS), forms a channel across the cell envelope to export proteins in a single step. Peptides secreted by the T1SSs comprise a group of antibiotics, called class II microcins, which carry an amino terminal secretion domain that is processed concomitantly with export.
View Article and Find Full Text PDFCotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components.
View Article and Find Full Text PDFAntibiotic resistance is a health concern. Class 1 integrons (Int1) are genetic elements that contribute to the problem, as they carry different antibiotic resistance genes in their variable region, frequently dfrA (resistance to trimethoprim) and, in their conserved region, the sul1 gene (resistance to sulfonamides, e.g.
View Article and Find Full Text PDFClass 1 integrons (Int1) contribute to antibiotic multiresistance in Gram-negative bacteria. Being frequently carried by conjugative plasmids, their spread would depend to some extent on their horizontal transfer to other bacteria. This was the main issue that was addressed in this work: the analysis of Int1 lateral transfer in the presence of different antibiotic pressures.
View Article and Find Full Text PDFClass 1 integrons are genetic elements that carry a variable set of antibiotic resistance genes, being frequently found in clinical Gram-negative isolates. It is generally assumed that they easily spread horizontally among bacteria, thus contributing to the appearance of multidrug resistant clones. However, there are few experimental studies on the lateral transfer of these elements performed with bacterial collections that had been gathered following an epidemiological design.
View Article and Find Full Text PDFRecA-independent recombination events between short direct repeats, leading to deletion of the intervening sequences, were found to occur in two genetic models in the K12 background. The first model was a small genomic island which had been shown to be mobile in its strain of origin and, when cloned, also in the K12 context. However, it did not encode a site-specific recombinase as mobile genomic islands usually do.
View Article and Find Full Text PDFUropathogenic Escherichia coli (UPEC) comprise a heterogeneous group of strains. In a previous epidemiological survey performed on 230 UPEC isolates, five virulence profiles were described, each one defined by the presence of some virulence determinants and by the absence of others. Phylogenetic groups and antibiotic resistances distributed non-randomly among the isolates with different profiles.
View Article and Find Full Text PDFUropathogenic Escherichia coli is the leading etiologic agent of urinary tract infections, encompassing a highly heterogeneous group of strains. Although many putative urovirulence factors have been described, none of them appear in all uropathogenic E. coli strains, a fact that suggests that this group would be composed of different pathogenic subgroups.
View Article and Find Full Text PDFGenomic islands are DNA regions containing variable genetic information related to secondary metabolism. Frequently, they have the ability to excise from and integrate into replicons through site-specific recombination. Thus, they are usually flanked by short direct repeats that act as attachment sites, and contain genes for an integrase and an excisionase which carry out the genetic exchange.
View Article and Find Full Text PDFUrinary tract infections are among the most common infectious diseases encountered in humans and Escherichia coli is their leading etiologic agent. Uropathogenic E. coli encompasses a group of bacteria possessing a variable virulence gene assortment.
View Article and Find Full Text PDFMicrocins are gene-encoded peptide antibiotics produced by enterobacteria that act on strains of gram-negative bacteria. In this work, we concentrated on higher-molecular-mass microcins, i.e.
View Article and Find Full Text PDFMicrocins are ribosomally synthesized peptide antibiotics that are produced by enterobacterial strains. Although the first studies concentrated on plasmid-encoded activities, in the last years three chromosome-encoded microcins have been described: H47, E492, and M. Here, a new microcin, I47, is presented as a fourth member of this group.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2004
Microcin H47 (MccH47) is a gene-encoded peptide antibiotic produced by an Escherichia coli clinical isolate which is active on strains of gram-negative bacteria. Its uptake by E. coli K-12-susceptible cells depends on the presence of any of the outer membrane proteins Cir, Fiu, and FepA, the three catechol receptors of this organism.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2003
It had been previously determined that the presence of F(o)F(1) ATP synthase was required for microcin H47 antibiotic action. In this work, microcin-resistant atp mutants were genetically analyzed. Their mutations, originated by Tn5 insertion, in all cases were found to affect determinants for the F(o) portion of ATP synthase.
View Article and Find Full Text PDF