Driver fatigue or drowsiness detection techniques can significantly enhance road safety measures and reduce traffic accidents. These approaches used different sensor technologies to acquire the human physiological and behavioral characteristics to investigate the driver's vigilance state. Although the driver's vigilance detection technique has attracted significant interest recently, few studies have been conducted to review it systematically.
View Article and Find Full Text PDFElectroencephalogram (EEG) signals are critical in interpreting sensorimotor activities for predicting body movements. However, their efficacy in identifying intralimb movements, such as the dorsiflexion and plantar flexion of the foot, remains suboptimal. This study aims to explore whether various EEG signal quantities can effectively recognize intralimb movements to facilitate the development of Brain-Computer Interface (BCI) devices for foot rehabilitation.
View Article and Find Full Text PDFIntroduction: Driving fatigue has been shown to increase the risk of accidents and potentially fatal crashes. Fatigue is a serious risk that some drivers do not take seriously. Previous studies investigated the effects of driving fatigue in the Malaysian oil and gas transportation industry by employing survey questionnaires.
View Article and Find Full Text PDFStroke is one of the most prevalent health issues that people face today, causing long-term complications such as paresis, hemiparesis, and aphasia. These conditions significantly impact a patient's physical abilities and cause financial and social hardships. In order to address these challenges, this paper presents a groundbreaking solution-a wearable rehabilitation glove.
View Article and Find Full Text PDFElectroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have temporal and spatial characteristics that may complement each other and, therefore, pose an intriguing approach for brain-computer interaction (BCI). In this work, the relationship between the hemodynamic response and brain oscillation activity was investigated using the concurrent recording of fNIRS and EEG during ankle joint movements. Twenty subjects participated in this experiment.
View Article and Find Full Text PDFElectroencephalography (EEG) signals have great impact on the development of assistive rehabilitation devices. These signals are used as a popular tool to investigate the functions and the behavior of the human motion in recent research. The study of EEG-based control of assistive devices is still in early stages.
View Article and Find Full Text PDFElectromyography (EMG)-based control is the core of prostheses, orthoses, and other rehabilitation devices in recent research. Nonetheless, EMG is difficult to use as a control signal given the complex nature of the signal. To overcome this problem, the researchers employed a pattern recognition technique.
View Article and Find Full Text PDF