Primary stability, the mechanical fixation between implant and bone prior to osseointegration, is crucial for the long-term success of cementless tibial trays. However, little is known about the mechanical interplay between the implant and bone internally, as experimental studies quantifying internal strain are limited. This study employed digital volume correlation (DVC) to quantify the immediate post-implantation strain field of five cadaveric tibiae implanted with a commercially available cementless titanium tibial tray (Attune, DePuy Synthes).
View Article and Find Full Text PDFBackground: Previous studies have evaluated the initial stability of uncemented tibial components in revision total knee replacement (rTKR) in the presence of an Anderson Orthopaedic Research Institute (AORI) Type II tibial defect. This study sought to evaluate similar metrics in the severe Type III (AORI TIII) defects with combined uncemented stem and sleeve fixation, specifically, the effect of varying the stem's length and tibial canal engagement upon stability and bone strain.
Method: Finite element models generated from the CT scans of 4 tibias with Type III defects were used to investigate the primary stability, in terms of the bone-implant composite peak micromotion (CPM) and microstrains (CPS), achieved after virtual implantations with and without stems.
Metaphyseal augments, such as sleeves, have been introduced to augment the fixation of revision total knee replacement (rTKR) components, and can be used with or without a stem. The effect of sleeve size in combination with stems on the primary stability and load transfer of a rTKR implant in AORI type IIB defects where the defect involves both condyles are poorly understood. The aim of this study was to examine the primary stability of revision tibial tray augmented with a sleeve in an AORI type IIB defect which involves both condyles with loss of cortical and cancellous bone.
View Article and Find Full Text PDFTraditionally, diaphyseal stems have been utilized to augment the stability of revision total knee replacement (rTKR) implants. More recently metaphyseal augments, such as sleeves, have been introduced to further augment component fixation. The effect of augments such as stems and sleeves have on the primary stability of a rTKR implant is poorly understood, however it has important implications on the complexity, costs and survivorship of the procedure.
View Article and Find Full Text PDFBackground: The Australian Synchrotron Imaging and Medical Beamline (IMBL) was designed as the world's widest synchrotron X-ray beam, enabling both clinical imaging and therapeutic applications for humans as well as the imaging of large animal models. Our group is developing methods for imaging the airways of newly developed CF animal models that display human-like lung disease, such as the CF pig, and we expect that the IMBL can be utilised to image airways in animals of this size.
Methods: This study utilised samples of excised tracheal tissue to assess the feasibility, logistics and protocols required for airway imaging in large animal models such as pigs and sheep at the IMBL.
Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. Advanced CF is characterized by a deficit in mucociliary transport (MCT), a process that traps and propels bacteria out of the lungs, but whether this deficit occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn piglets with CF.
View Article and Find Full Text PDFMucociliary transport (MCT) is an innate defense mechanism that removes particulates, noxious material, and microorganisms from the lung. Several airway diseases exhibit abnormal MCT, including asthma, chronic bronchitis, and cystic fibrosis. However, it remains uncertain whether MCT abnormalities contribute to the genesis of disease or whether they are secondary manifestations that may fuel disease progression.
View Article and Find Full Text PDFThe pathogenesis of cystic fibrosis (CF) airway disease is not well understood. A porcine CF model was recently generated, and these animals develop lung disease similar to humans with CF. At birth, before infection and inflammation, CF pigs have airways that are irregularly shaped and have a reduced caliber compared to non-CF pigs.
View Article and Find Full Text PDFAm J Respir Crit Care Med
December 2013
Rationale: Air trapping and airflow obstruction are being increasingly identified in infants with cystic fibrosis. These findings are commonly attributed to airway infection, inflammation, and mucus buildup.
Objectives: To learn if air trapping and airflow obstruction are present before the onset of airway infection and inflammation in cystic fibrosis.
Objectives/hypothesis: Obstructive sleep apnea (OSA) is a sleep disorder caused by partial or complete collapse of the pharyngeal airway. Genioglossal advancement (GGA) is a well-tolerated surgical procedure intended to address hypopharyngeal collapse, yet there are few studies that monitor changes in airflow dynamics at this site. Computation fluid dynamics (CFD) utilizes airflow simulation to predict changes in airflow after anatomic manipulation.
View Article and Find Full Text PDF