Chicken bone waste is generated by the food service industry and individual households. The main issues in bone waste management are related to illegal discharge or high disposal costs. However, their valorisation raises great prospects towards the achievement of environmental sustainability and circular bioeconomy.
View Article and Find Full Text PDFThe presented research results the gasification process of biomass waste (brewery spend grain, wheat straw, hay, pine sawdust). Experimental investigations focused on determining the influence of gasification agent (CO, steam, and steam and CO mixture) and the presence of a solid catalyst (MgO∙CaO, TiO, CuO and SrO). Investigations were performed towards syngas production.
View Article and Find Full Text PDFThe purpose of this work was to determine the effect of the addition of NHCl to oat straw on the evolved gases, kinetic triplet, and thermodynamic parameters of the pyrolysis process at 873 K. A complementary approach allowed to assess the effects of the pyrolysis of chlorine- and nitrogen-enriched biomass. The thermal analysis of biomass was performed for four heating rates (5, 10, 20, and 30 K/min).
View Article and Find Full Text PDFThe global emission of CO through fossil fuel combustion is still increasing, which is a major challenge for the international community. An integrated carbon capture and utilisation (ICCU) process with a CaO-based sorbent is a promising alternative to effectively reduce emissions. In this work, a comparative thermodynamic analysis of two CaO-based sorbents (commercial and sol-gel CaO) was performed for one cycle of ICCU.
View Article and Find Full Text PDFThe current COVID-19 pandemic situation and the associated restrictions have increased the amount of generated waste. It results from the necessity to wear personal protective equipment. Thus, the disposal of masks and gloves is a topical issue and requires immediate investigation.
View Article and Find Full Text PDFPyrolysis of the waste organic fraction is expected to be a central element to meet the primary energy demand in future: it increases the impact of renewable energy sources on the power generation sector and allows the amount of waste to be reduced, putting an end to landfills. In the present study, kinetic studies on the pyrolysis of biomass wastes are carried out. Two kinds of industrial organic waste are investigated: brewery spent grain (BSG) and medium-density fiberboard (MDF).
View Article and Find Full Text PDFBioresour Technol
January 2022
The distribution of biomass pyrolysis products under high pressure have rarely been reported. In this study, the effect of pressure on the product distribution of pine sawdust (PS) pyrolysis was studied. The synergistic effect of the side wall rubber (SWR) and PS was confirmed under pressurized conditions.
View Article and Find Full Text PDFElectrically insulating objects immersed in a weakly conducting liquid may Quincke rotate when subjected to an electric field. Experimental and theoretical investigations of this type of electrorotation typically concern rigid particles and particle-free droplets. This work provides the basic features of electric field-induced rotation of particle-covered droplets that expand the current knowledge in this area.
View Article and Find Full Text PDFManipulation of particles at the surface of a droplet can lead to the formation of structures with heterogeneous surfaces, including patchy colloidal capsules or patchy particles. Here, we study the assembly and rearrangement of microparticles confined at the surface of oil droplets. These processes are driven by electric-field-induced hydrodynamic flows and by 'electro-shaking' the colloidal particles.
View Article and Find Full Text PDFA novel approach, linking both experiments and modelling, was applied to obtain a better understanding of combustion characteristics of torrefied biomass. Therefore, Pine, Acacia and Miscanthus giganteus have been investigated under 260°C, 1h residence time and argon atmosphere. A higher heating value and carbon content corresponding to a higher fixed carbon, lower volatile matter, moisture content, and ratio O/C were obtained for all torrefied biomass.
View Article and Find Full Text PDFFe/TiO/zeolite Y photocatalyst synthesized by using sonophotodeposition method was compared with photocatalysts prepared by simple photodeposition and sonodeposition methods in order to clarify the role of light irradiation and ultrasounds while they are used simultaneously. To gain an insight into the mechanism of this method a detailed characterization of the photocatalysts was carried out by means of the following techniques: UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Mössbauer measurements and photocatalytic test reaction. Basing on the results from these techniques the chemical role of light and mainly mechanical role of ultrasound were observed.
View Article and Find Full Text PDFThis short review provides the current state-of-the-art of in situ coupling of ultrasound to chemical deposition methods. A synergetic action of the ultrasound and light radiation or electrical fields may result in new powerful methodologies, and these include sonophotodeposition and sonoelectrodeposition processes. The effect of ultrasound is explained on the base of different physical mechanisms emerging from cavitation phenomenon.
View Article and Find Full Text PDFIn this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants. Proximate and ultimate analyses were performed.
View Article and Find Full Text PDFGlucose was oxidized in the presence of powdered TiO(2) photocatalysts synthesized by an ultrasound-promoted sol-gel method. The catalysts were more selective towards glucaric acid, gluconic acid and arabitol (total selectivity approx. 70%) than the most popular photocatalyst, Degussa P-25.
View Article and Find Full Text PDF