Mucopolysaccharidosis (MPS) comprises a group of inherited metabolic diseases. Each MPS type is caused by a deficiency in the activity of one kind of enzymes involved in glycosaminoglycan (GAG) degradation, resulting from the presence of pathogenic variant(s) of the corresponding gene. All types/subtypes of MPS, which are classified on the basis of all kinds of defective enzymes and accumulated GAG(s), are severe diseases.
View Article and Find Full Text PDFBackground: Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilippo (MPS III) and Morquio (MPS IV), are further distinguished into subclasses based on different enzymes that are deficient.
View Article and Find Full Text PDFSanfilippo disease is a lysosomal storage disorder from the group of mucopolysaccharidoses (MPS), characterized by storage of glycosaminoglycans (GAGs); thus, it is also called MPS type III. The syndrome is divided into 4 subtypes (MPS III A, B, C and D). Despite the storage of the same GAG, heparan sulfate (HS), the course of these subtypes can vary considerably.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the gene, has thus far been described only in the context of animal models.
View Article and Find Full Text PDFOver the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge.
View Article and Find Full Text PDFEstrogen is a group of hormones that collaborate with the nervous system to impact the overall well-being of all genders. It influences many processes, including those occurring in the central nervous system, affecting learning and memory, and playing roles in neurodegenerative diseases and mental disorders. The hormone's action is mediated by specific receptors.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are a group of diseases caused by mutations in genes encoding lysosomal enzymes that catalyze reactions of glycosaminoglycan (GAG) degradation. As a result, GAGs accumulate in lysosomes, impairing the proper functioning of entire cells and tissues. There are 14 types/subtypes of MPS, which are differentiated by the kind(s) of accumulated GAG(s) and the type of a non-functional lysosomal enzyme.
View Article and Find Full Text PDFRabbit Haemorrhagic Disease (RHD) is a severe disease caused by /GI.1 and GI.2.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are rare genetic disorders belonging to the lysosomal storage diseases. They are caused by mutations in genes encoding lysosomal enzymes responsible for degrading glycosaminoglycans (GAGs). As a result, GAGs accumulate in lysosomes, leading to impairment of cells, organs and, consequently, the entire body.
View Article and Find Full Text PDFThe oxytocin receptor (OXTR), encoded by the gene, is responsible for the signal transduction after binding its ligand, oxytocin. Although this signaling is primarily involved in controlling maternal behavior, it was demonstrated that OXTR also plays a role in the development of the nervous system. Therefore, it is not a surprise that both the ligand and the receptor are involved in the modulation of behaviors, especially those related to sexual, social, and stress-induced activities.
View Article and Find Full Text PDFMucopolysaccharidoses (MPS) are inherited metabolic diseases caused by storage of glycosaminoglycans (GAGs), however, various modulations of the course of these diseases were identified recently due to impairment of different cellular processes. Here, using transcriptomic analyses in cells derived from patients suffering from eleven types of MPS, we demonstrated that expression of dozens to hundreds of genes coding for proteins involved in signal transduction processes is significantly changed in MPS cell relative to controls. When studying membrane estrogen receptor 1 (GPER1) and oxytocin receptor (OXTR) in more detail, we unexpectedly found formation of aggregates of GPER1 in MPS I, and those of OXTR in both MPS I and MPS II cells.
View Article and Find Full Text PDFRapid development of antibiotic resistance of bacteria and fungi, as well as cancer drug resistance, has become a global medical problem. Therefore, alternative methods of treatment are considered. Studies of recent years have focused on finding new biologically active compounds that may be effective against drug-resistant cells.
View Article and Find Full Text PDF