Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm.
View Article and Find Full Text PDFThe evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces.
View Article and Find Full Text PDFThe pigment 6,6'-dibromoindigo (Tyrian purple) shows strong intermolecular hydrogen bonds and the film formation is, therefore, expected to be influenced by the polar character of the substrate surface. Thin films of Tyrian purple were prepared by physical vapor deposition on a variety of substrates with different surface energies: from highly polar silicon dioxide surfaces to hydrophobic polymer surfaces. The crystallographic properties were investigated by X-ray diffraction techniques such as X-ray reflectivity and grazing incidence X-ray diffraction.
View Article and Find Full Text PDFThe appearance of surface-induced phases of molecular crystals is a frequently observed phenomenon in organic electronics. However, despite their fundamental importance, the origin of such phases is not yet fully resolved. The organic molecule 6,6'-dibromoindigo (Tyrian purple) forms two polymorphs within thin films.
View Article and Find Full Text PDF