Mitochondria are dynamic, semi-autonomous organelles that execute numerous life-sustaining tasks in eukaryotic cells. Functioning of mitochondria depends on the adequate action of versatile proteinaceous machineries. Fine-tuning of mitochondrial activity in response to cellular needs involves continuous remodeling of organellar proteome.
View Article and Find Full Text PDFMaintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance.
View Article and Find Full Text PDFMitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities.
View Article and Find Full Text PDFMitochondria play the fundamental role in energy production and integration of many important metabolic and signalling pathways, which makes them essential for the function of a cell. The optimal operation of mitochondria depends on the qualitative and quantitative composition of the organellar proteins - the proteome. To maintain the homeostasis of the mitochondrial proteome, mitochondria developed a protein quality control system, which acts on the molecular, cellular and organellar levels.
View Article and Find Full Text PDFImport and assembly of mitochondrial proteins depend on a complex interplay of proteinaceous translocation machineries. The role of lipids in this process has been studied only marginally and so far no direct role for a specific lipid in mitochondrial protein biogenesis has been shown. Here we analyzed a potential role of phosphatidic acid (PA) in biogenesis of mitochondrial proteins in Saccharomyces cerevisiae.
View Article and Find Full Text PDFMitochondria have to import most of their proteins in order to fulfill a multitude of metabolic functions. Sophisticated import machineries mediate targeting and translocation of preproteins from the cytosol and subsequent sorting into their suborganellar destination. The mode of action of these machineries has been considered for long time as a static and constitutively active process.
View Article and Find Full Text PDFMitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle.
View Article and Find Full Text PDFDespite the simplicity of the yeast its basic cellular machinery tremendously mirrors that of higher eukaryotic counterparts. Thus, this unicellular organism turned out to be an invaluable model system to study the countless mechanisms that govern life of the cell. Recently, it has also enabled the deciphering of signalling pathways that control flux of mitochondrial proteins to the organelle according to metabolic requirements.
View Article and Find Full Text PDFMost mitochondrial proteins are imported by the translocase of the outer mitochondrial membrane (TOM). Tom22 functions as central receptor and transfers preproteins to the import pore. Casein kinase 2 (CK2) constitutively phosphorylates the cytosolic precursor of Tom22 at Ser44 and Ser46 and, thus, promotes its import.
View Article and Find Full Text PDF