Gloves are one of the most important elements of personal protective equipment (PPE). To improve gloves properties, a lot of different methods of surface modifications are used. In this work, the application of geometric, chemical, and plasma surface modifications to improve the hydrophobicity of butyl (IIR) and silicone (MVQ) rubber are described.
View Article and Find Full Text PDFThe article presents validation argumentation of the novel method of evaluating resistance to surface wetting with different liquids of protective materials intended for polymer protective gloves based on the three parameters: water permeability index, non-wettability index and absorption index. Using our own method of evaluating resistance to surface wetting, it was shown that the knurled structure of the palm part of polymer protective gloves may inhibit transport of harmful and hazardous liquids outside the area of the protective glove. Currently, there is lack of objectifying methods for evaluation of surface wettability focused on the mentioned aspects.
View Article and Find Full Text PDFThis paper presents the use of ashes from brown coal combustion (BCA) as fillers in rubber mixtures, to reduce the emission of volatile organic compounds. Two types of ash, BCA1 and BCA2, were selected as fillers for styrene-butadiene rubber (SBR). The ashes were produced during the treatment of brown coal at the Bełchatów Power Plant in the years 2017 and 2018.
View Article and Find Full Text PDFThis article presents the results of the cross-linking of oxidized flake graphene (GO) using hydrazine at room temperature. Conducting the process at temperatures up to 30 °C allowed to eliminate the phenomenon of thermal GO reduction to its non-oxidized form. In addition, based on the Infrared and Raman spectroscopy as well as X-ray photoelectron spectroscopy (XPS) analysis, the cross-linking ability of GO was observed depending on its size and degree of oxidation.
View Article and Find Full Text PDF