Publications by authors named "Magdalena M Bajer"

The translation inhibitor and tumor suppressor Pdcd4 was reported to be lost in various tumors and put forward as prognostic marker in tumorigenesis. Decreased Pdcd4 protein stability due to PI3K-mTOR-p70S6K1 dependent phosphorylation of Pdcd4 followed by β-TrCP1-mediated ubiquitination, and proteasomal destruction of the protein was characterized as a major mechanism contributing to the loss of Pdcd4 expression in tumors. In an attempt to identify stabilizers of Pdcd4, we used a luciferase-based high-throughput compatible cellular assay to monitor phosphorylation-dependent proteasomal degradation of Pdcd4 in response to mitogen stimulation.

View Article and Find Full Text PDF

Deregulation of the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-70kDa ribosomal protein S6 kinase 1 (p70(S6K)) pathway is commonly observed in many tumors. This pathway controls proliferation, survival, and translation, and its overactivation is associated with poor prognosis for tumor-associated survival. Current efforts focus on the development of novel inhibitors of this pathway.

View Article and Find Full Text PDF

Rapid alterations in protein expression are commonly regulated by adjusting translation. In addition to cap-dependent translation, which is e.g.

View Article and Find Full Text PDF

Loss of the tumor suppressor Pdcd4 was reported for various tumor entities and proposed as a prognostic marker in tumorigenesis. We previously characterized decreased Pdcd4 protein stability in response to mitogenic stimuli, which resulted from p70(S6K1)-dependent protein phosphorylation, β-TrCP1-mediated ubiquitination, and proteasomal destruction. Following high-throughput screening of natural product extract libraries using a luciferase-based reporter assay to monitor phosphorylation-dependent proteasomal degradation of the tumor suppressor Pdcd4, we succeeded in showing that a crude extract from Eriophyllum lanatum stabilized Pdcd4 from TPA-induced degradation.

View Article and Find Full Text PDF

The tumor suppressor programmed cell death 4 (Pdcd4) is lost in various tumor tissues. Loss of Pdcd4 has been associated with increased tumorigenic potential and tumor progression. While various mechanisms of Pdcd4 regulation have been described, the effect of an inflammatory tumor microenvironment on Pdcd4 protein expression has not been characterized so far.

View Article and Find Full Text PDF