Mitochondria are considered one of the main sites of reactive oxygen species (ROS) production in the eukaryotic cells. For this reason, mitochondrial dysfunction associated with increased ROS production underlies various pathological conditions as well as promotes aging. Chronically increased rates of ROS production contribute to oxidative damage to macromolecules, i.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients.
View Article and Find Full Text PDFThe order of Cyanidiales comprises seven acido-thermophilic red microalgal species thriving in hot springs of volcanic origin characterized by extremely low pH, moderately high temperatures and the presence of high concentrations of sulphites and heavy metals that are prohibitive for most other organisms. Little is known about the physiological processes underlying the long-term adaptation of these extremophiles to such hostile environments. Here, we investigated the long-term adaptive responses of a red microalga Cyanidioschyzon merolae, a representative of Cyanidiales, to extremely high nickel concentrations.
View Article and Find Full Text PDFUncontrolled inflammatory response arising from the tumor microenvironment (TME) significantly contributes to cancer progression, prompting an investigation and careful evaluation of counter-regulatory mechanisms. We identified a trimeric complex at the mitochondria-associated membranes (MAMs), in which the purinergic P2X7 receptor - NLRP3 inflammasome liaison is fine-tuned by the tumor suppressor PML. PML downregulation drives an exacerbated immune response due to a loss of P2X7R-NLRP3 restraint that boosts tumor growth.
View Article and Find Full Text PDFLeber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis.
View Article and Find Full Text PDFThe clinical picture of autoimmune hepatitis (AIH) varies markedly between patients, potentially due to genetic modifiers. The aim of this study was to evaluate genetic variants previously associated with fatty liver as potential modulators of the AIH phenotype. The study cohort comprised 313 non-transplanted adults with AIH.
View Article and Find Full Text PDFBackground: Wolfram syndrome (WFS) is a rare autosomal recessive syndrome in which diabetes mellitus and neurodegenerative disorders occur as a result of Wolframin deficiency and increased ER stress. In addition, WFS1 deficiency leads to calcium homeostasis disturbances and can change mitochondrial dynamics. The aim of this study was to evaluate protein levels and changes in gene transcription on human WFS cell model under experimental ER stress.
View Article and Find Full Text PDFMitochondria are the organelles where the most fundamental processes of energy transformation within the cell are located. They are also involved in several processes like apoptosis and autophagy, reactive oxygen species formation, and calcium signaling, which are crucial for proper cell functioning. In addition, mitochondrial genome hosts genes encoding important proteins incorporated in respiratory chain complexes and indispensable for the oxidative phosphorylation.
View Article and Find Full Text PDFNumerous papers have reported altered expression patterns of Ras and/or ShcA proteins in different types of cancers. Their level can be potentially associated with oncogenic processes. We analyzed samples of pediatric brain tumors reflecting different groups such as choroid plexus tumors, diffuse astrocytic and oligodendroglial tumors, embryonal tumors, ependymal tumors, and other astrocytic tumors as well as tumor malignancy grade, in order to characterize the expression profile of Ras, TrkB, and three isoforms of ShcA, namely, p66Shc, p52Shc, and p46Shc proteins.
View Article and Find Full Text PDFAccording to the 'multiple-hit' hypothesis, several factors can act simultaneously in nonalcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered one of the main contributors involved in the development and risk of NAFLD progression to nonalcoholic steatohepatitis (NASH) characterized by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are closely related to the development and progression of liver steatosis and NAFLD pathogenesis.
View Article and Find Full Text PDFPreclinical models of ischemia/reperfusion injury (RI) demonstrate the deleterious effects of permeability transition pore complex (PTPC) opening in the first minutes upon revascularization of the occluded vessel. The ATP synthase c subunit (Csub) influences PTPC activity in cells, thus impacting tissue injury. A conserved glycine-rich domain in Csub is classified as critical because, when mutated, it modifies ATP synthase properties, protein interaction with the mitochondrial calcium (Ca) uniporter complex, and the conductance of the PTPC.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2020
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies.
View Article and Find Full Text PDFMitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals.
View Article and Find Full Text PDFBackground/objectives: Obesity is a complex disease characterized by the accumulation of excess body fat, which is caused by an increase in adipose cell size and number. The major source of adipocytes comes from mesenchymal stem cells (MSCs), although their roles in obesity remain unclear. An understanding of the mechanisms, regulation, and outcomes of adipogenesis is crucial for the development of new treatments for obesity-related diseases.
View Article and Find Full Text PDFThe impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial FF ATP synthase (or subunits thereof) to MPT is a matter of debate.
View Article and Find Full Text PDFBackground: Patients with diabetes are at a high risk of developing both micro- and macrovascular disease. Hyperglycaemia seems to be the main factor in the pathogenesis of diabetic cardiomyopathy, often based on increased oxidative stress. Carvedilol, a β-adrenergic blocker, has intrinsic antioxidant properties and was previously described to be effective in the protection of cardiac mitochondria against oxidative stress.
View Article and Find Full Text PDFThe adaptor protein p66Shc links membrane receptors to intracellular signaling pathways, with downstream consequences on mitochondrial metabolism and reactive oxygen species production. Moreover, p66Shc has also been implicated in cancer development, progression, and metastasis. Increased phosphorylation of serine 36 residue of p66Shc very often correlates with oxidative stress-associated pathologies.
View Article and Find Full Text PDFThe adaptor protein p66Shc links membrane receptors to intracellular signalling pathways and has the potential to respond to energy status changes and regulate mitogenic signalling. Initially reported to mediate growth signals in normal and cancer cells, p66Shc has also been recognized as a pro-apoptotic protein involved in the cellular response to oxidative stress. Moreover, it is a key element in processes such as cancer cell proliferation, tumor progression, metastasis and metabolic reprogramming.
View Article and Find Full Text PDF