Background: Nitric oxide synthase (NOS) is an enzyme that catalyzes the formation of nitric oxide (NO), the altered production of which is characteristic of diabetic nephropathy. NOS exists in three isoforms: NOS1, NOS2, and NOS3. Moreover, there are reports about the potential role of polymorphisms in the development of diabetes complications.
View Article and Find Full Text PDFHeat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic.
View Article and Find Full Text PDFBackground: Angiotensin-converting enzyme (ACE) is responsible for the production of angiotensin II, and increased production of angiotensin II is observed in diabetes. What is more, polymorphisms may play a role in the development of diabetic nephropathy. The aim of this study was to assess the role of selected polymorphisms (rs4343 and rs4646994) in the risk of development of diabetic nephropathy and in the likelihood of renal replacement therapy.
View Article and Find Full Text PDFObesity and diabetes are a problem of modern medicine. Although the environmental factors contributing to the development of these diseases are widely known, research into genetic factors is still ongoing. At the same time, the role of inflammation in the pathophysiology of obesity and diabetes is increasingly emphasized.
View Article and Find Full Text PDFGlutathione S-transferases are a family of enzymes, whose main role is to detoxify cells from many exogenous factors, such as xenobiotics or carcinogens. It has also been proven that changes in the genes encoding these enzymes may affect the incidence of selected cancers and cardiovascular diseases. The aim of this study was to review the most important reports related to the role of glutathione S-transferases in the pathophysiology of two of the most common diseases in modern society - cancers and cardiovascular diseases.
View Article and Find Full Text PDF