Publications by authors named "Magdalena Kiezel-Tsugunova"

Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade.

View Article and Find Full Text PDF

Fibrates and omega-3 polyunsaturated acids are used for the treatment of hypertriglyceridemia but have not demonstrated consistent effects on cardiovascular (CV) risk. In this study, we investigate how these two pharmacological agents influence plasma levels of bioactive lipid mediators, aiming to explore their efficacy beyond that of lipid-lowering agents. Plasma from overweight patients with non-alcoholic fatty liver disease (NAFLD) and hypertriglyceridemia, participating in a randomized placebo-controlled study investigating the effects of 12 weeks treatment with fenofibrate or omega-3 free carboxylic acids (OM-3CA) (200 mg or 4 g per day, respectively), were analyzed for eicosanoids and related PUFA species, N-acylethanolamines (NAE) and ceramides.

View Article and Find Full Text PDF

Nutritional supplementation with fish oil or ω-3 (n-3) polyunsaturated fatty acids (PUFAs) has potential benefits for skin inflammation. Although the differential metabolism of the main n-3PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could lead to distinct activities, there are no clinical studies comparing their relative efficacy in human skin. Following a 10-wk oral supplementation of healthy volunteers and using mass spectrometry-based lipidomics, we found that n-3PUFA mainly affected the epidermal mediator lipidome.

View Article and Find Full Text PDF

Human skin has a distinct profile of fatty acids and related bioactive lipid mediators that regulate many aspects of epidermal and dermal homeostasis, including immune and inflammatory reactions. Sebum lipids act as effective antimicrobial agents, shape immune cell communications and contribute to the epidermal lipidome. The essential fatty acid linoleic acid is crucial for the structure of the epidermal barrier, while polyunsaturated fatty acids act as precursors to eicosanoids, octadecanoids and docosanoids through cyclooxygenase, lipoxygenase and cytochrome P450 monooxygenase-mediated reactions, and endocannabinoids and -acyl ethanolamines.

View Article and Find Full Text PDF

Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis.

View Article and Find Full Text PDF