With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein.
View Article and Find Full Text PDFModified vaccinia virus Ankara (MVA) is an attenuated poxvirus strain, currently under evaluation as a vaccine vector in various clinical settings. It has been reported that human dendritic cells (DCs) mature after infection with MVA, but reports on the functionality of DCs have so far been controversial. In this work, we studied the phenotype and functionality of MVA-infected DCs.
View Article and Find Full Text PDFBackground: The extreme genetic diversity of the human immunodeficiency virus type 1 (HIV-1) poses a daunting challenge to the generation of an effective AIDS vaccine. In Argentina, the epidemic is characterized by the high prevalence of infections caused by subtype B and BF variants. The aim of this study was to characterize in mice the immunogenic and antigenic properties of the Env protein from CRF12_BF in comparison with clade B, employing prime-boost schemes with the combination of recombinant DNA and vaccinia virus (VV) vectors.
View Article and Find Full Text PDFAn optimal vaccine against leishmaniasis should elicit parasite specific CD4+ and cytotoxic CD8+ T cells. In this investigation, we described a prime/boost immunization approach based on DNA and on poxvirus vectors (Western Reserve, WR, and the highly attenuated modified vaccinia virus Ankara, MVA), both expressing the LACK antigen of Leishmania infantum, that triggers different levels of specific CD8+ T cell responses and protection (reduction in lesion size and parasitemia) against L. major infection in mice.
View Article and Find Full Text PDFThe majority of infections initiate their departure from a mucosal surface, such as Human immunodeficiency virus (HIV), a sexually transmitted virus. Therefore, the induction of mucosal immunity is a high priority in the development of vaccines against mucosal pathogens. The selection of an appropriate antigen delivery system is necessary to induce an efficient mucosal immune response.
View Article and Find Full Text PDFEfficient HIV vaccines have to trigger cell-mediated immunity directed against various viral antigens. However little is known about the breadth of the response induced by vaccines carrying multiple proteins. Here, we report on the immunogenicity of a construct harbouring a fusion of the HIV-1 IIIB gag, pol and nef genes (gpn) designed for optimal safety and equimolar expression of the HIV proteins.
View Article and Find Full Text PDFVaccines intended to prevent mucosal transmission of HIV should be able to induce multiple immune effectors in the host including Abs and cell-mediated immune responses at mucosal sites. The aim of this study was to characterize and to enhance the immunogenicity of a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 Env IIIB Ag (MVAenv) inoculated in BALB/c mice by mucosal routes. Intravaginal inoculation of MVAenv was not immunogenic, whereas intranasally it induced a significant immune response to the HIV Ag.
View Article and Find Full Text PDFDevelopment of a protective host response against intracellular pathogens requires innate and cell-mediated immune responses, with cytokines playing an important role in host defences. Different studies in mice have shown that IL-12 can promote protective immunity to a variety of viruses but, during virus infection, little is known about the in vivo function of IL-18 alone or in combination with IL-12. Using recombinant vaccinia viruses (rVVs) expressing IL-12 and IL-18, the antiviral role of both cytokines in mice has been analysed.
View Article and Find Full Text PDFVaccines that elicit systemic and mucosal immune responses should be the choice to control human immunodeficiency virus (HIV) infections. We have previously shown that prime-boost immunizations with influenza virus Env and vaccinia virus (VV) WR Env recombinants induced an enhanced systemic CD8(+) T-cell response against HIV-1 Env antigen. In this report, we analyzed in BALB/c mice after priming with influenza virus Env the ability of two VV recombinants expressing HIV-1 Env B (VV WR Env and the highly attenuated modified VV Ankara [MVA] Env) to boost cellular immune responses in the spleen and in the lymph nodes draining the genital and rectal tracts.
View Article and Find Full Text PDFProtocols of immunization based on the DNA prime/vaccinia virus (VV) boost regime with recombinants expressing relevant antigens have been shown to elicit protection against a variety of pathogens in animal model systems, and various phase I clinical trials have been initiated with this vaccination approach. We have previously shown that mice immunized with a DNA vector expressing p36/LACK of Leishmania infantum followed by a booster with VVp36/LACK induced significant protection against Leishmania major infection. To further improve this protocol of immunization, here we investigated whether the cytokines interleukin-12 (IL-12) and IL-18 could enhance protection against L.
View Article and Find Full Text PDF