Publications by authors named "Magdalena Florkowska"

Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells.

View Article and Find Full Text PDF

Well into the second decade of the 21st century, the field of regenerative medicine is bursting with hopes and promises to heal young and old. The bespoken generation of cells is thought to offer unprecedented cures for a vast range of diseases. Haematological disorders have already benefited tremendously from stem cell therapy in the form of bone marrow transplantation.

View Article and Find Full Text PDF

The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming.

View Article and Find Full Text PDF

Unlabelled: : Hematopoietic cell-based therapies are currently available treatment options for many hematological and nonhematological disorders. However, the scarcity of allogeneic donor-derived cells is a major hurdle in treating these disorders. Embryonic stem cell-based directed differentiation and direct reprogramming of somatic cells provide excellent tools for the potential generation of hematopoietic stem cells usable in the clinic for cellular therapies.

View Article and Find Full Text PDF

Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity.

View Article and Find Full Text PDF

Recent reports have shown that somatic cells, under appropriate culture conditions, could be directly reprogrammed to cardiac, hepatic, or neuronal phenotype by lineage-specific transcription factors. In this study, we demonstrate that both embryonic and adult somatic fibroblasts can be efficiently reprogrammed to clonal multilineage hematopoietic progenitors by the ectopic expression of the transcription factors ERG, GATA2, LMO2, RUNX1c, and SCL. These reprogrammed cells were stably expanded on stromal cells and possessed short-term reconstitution ability in vivo.

View Article and Find Full Text PDF

Background: Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins.

View Article and Find Full Text PDF

Kinins, universal mediators of inflammation, are recognized by two kinds of receptors, B1 and B2, which have been found to be expressed in numerous cell types of several species. However, the knowledge of the regulation of these receptors in leukocytes is still not satisfactory. In the current work, we have demonstrated a constitutive production of B2 receptor mRNA in the human promonocyte U937 cells and its two-fold augmentation after cell differentiation with retinoic acid and phorbol ester.

View Article and Find Full Text PDF