Objective: The need of today's research is to develop successful and reliable diabetic animal models for understanding the disease susceptibility and pathogenesis. Enormous success of animal models had already been acclaimed for identifying key genetic and environmental factors like Idd loci and effects of microorganisms including the gut microbiota. Furthermore, animal models had also helped in identifying many therapeutic targets and strategies for immune-intervention.
View Article and Find Full Text PDFAtrial natriuretic peptide (ANP) is produced and released by mammalian cardiomyocytes and induces natriuresis, diuresis, and lowering of blood pressure. The present study examined localization of ANP and a possible role of the hypothalamic-pituitary-adrenal axis (HPA) activity on the expression of proANP gene in the heart. The Sprague Dawley (SD) and Lewis (LE) rat strains were used.
View Article and Find Full Text PDFBackground: Our goal was to investigate the effect of short term exercise on fasting and postprandial lipoprotein profile.
Methods: Healthy sedentary men exercised 20 min for four days. The intensity of exercise was modulated to maintain 75-80 % of a calculated HRmax.
The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy.
View Article and Find Full Text PDFMarfan syndrome (MFS) is an autosomal dominant disorder caused by mutations in the fibrillin 1 gene (FBN1). Neonatal form of MFS is rare and is associated with severe phenotype and a poor prognosis. We report on a newborn girl with neonatal MFS who displayed cyanosis and dyspnea on the first day of life.
View Article and Find Full Text PDFVasoactive intestinal peptide (VIP) is a vasorelaxant peptide that addresses two receptor subtypes, VPAC1 and VPAC2. It stimulates insulin secretion and mediates anti-inflammatory effects and has been proposed for treatment of type 2 and autoimmune diabetes. In the heart, VIP is produced and released primarily by intrinsic neurons and improves cardiac perfusion and function.
View Article and Find Full Text PDFVasoactive intestinal peptide (VIP) is a 28-amino acid peptide that belongs to a family of structurally related peptide hormones including pituitary adenylate cyclase-activating peptide (PACAP). These hormones are widely distributed in the nervous system, where they act as neurotransmitters. Their biological effects are mediated by specific receptors, VPAC1 and VPAC2, which have comparable affinity for VIP and PACAP, and PAC1, which binds VIP with 1,000-fold lower affinity than PACAP.
View Article and Find Full Text PDFVasoactive intestinal peptide (VIP) is a 28-amino acid peptide that belongs to a family of structurally related peptide hormones including pituitary adenylate cyclase-activating peptide (PACAP). These hormones are widely distributed in the nervous system, where they act as neurotransmitters. Their biological effects are mediated by specific receptors, VPAC1 and VPAC2, which have comparable affinity for VIP and PACAP, and PAC1, which binds VIP with 1,000-fold lower affinity than PACAP.
View Article and Find Full Text PDFThe aortic bodies are small paraganglia distributed along the vagus nerve and its branches in the vicinity of the aortic arch which, like the carotid bodies, act as arterial chemoreceptors. In the rat carotid body, corelease of ATP and acetylcholine (ACh) from glomus cells is considered to be the main mechanism mediating fast hypoxic chemotransmission while dopamine, serotonin, and nitric oxide (NO) exert modulating effects. The present study was aimed at determination of the endogenous sources of serotonin, ACh and NO within rat and guinea pig aortic bodies by immunohistochemical double- and triple-labeling approaches, utilizing antibodies to serotonin, the NO and ACh synthesizing enzymes neuronal NO synthase (nNOS) and choline acetyltransferase (ChAT), respectively, as well as to the vesicular acetylcholine transporter (VAChT).
View Article and Find Full Text PDFNeuronal nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels that consist of various subunits. During ontogeny, muscular and neuronal nAChR undergo changes in the distribution and subunit composition in skeletal muscle and brain, respectively. Here, we have investigated the occurrence of the ligand-binding alpha-subunits of neuronal nAChR by means of reverse transcription/polymerase chain reaction and immunohistochemistry in the rat heart during prenatal and postnatal development and after capsaicin-induced sensory denervation.
View Article and Find Full Text PDFDuring ontogenesis the 52 amino acid peptide adrenomedullin is first expressed in the heart and it is essential for normal cardiovascular development. Recent work suggests that most adrenomedullin effects are conveyed via the calcitonin receptor-like receptor (CRLR) in combination with appropriate receptor activity-modifying proteins (RAMPs). Here, we investigated the expression of these components during the development of the rat heart, focusing on the period of coronary vascular development.
View Article and Find Full Text PDF