Publications by authors named "Magdalena Dabrowska"

Muscle larva of the parasitic nematode spp. lives in a portion of muscle fibre transformed to a nurse cell (NC). Based on our previous transcriptomic studies, NC growth arrest was inferred to be accompanied by cellular senescence.

View Article and Find Full Text PDF

A worldwide crisis with nitrosamine contamination in medical products began in 2018. Therefore, trace-level analysis of nitrosamines is becoming an emerging topic of interest in the field of quality control. A novel GC-MS method with electron ionization and microextraction was developed and validated for simultaneous determination of nine carcinogenic nitrosamines (NDMA, NMEA, NDEA, NDBA, NMOR, NPYR, NPIP, NDPA, and -methyl-npz) in active pharmaceutical ingredients (APIs): cilostazol, sunitinib malate, and olmesartan medoxomil.

View Article and Find Full Text PDF

Analysis of the state of knowledge showed a gap in the description of tool-stone feedback. Therefore, the aim of this study was to investigate tool-stone interactions. Spherical-like silicate stones were hit by stiff and flexible tines with a duckfoot or a coulter.

View Article and Find Full Text PDF

The kinetics and dynamics of the stiff and flexible tines with the duckfoot and the coulter after impact with stones embedded in compacted soil were examined. The beak of the duckfoot was positioned in the axis of the row of stones embedded in the soil at the depth of stones thickness. The coulter covered the stone or impact the edge of the stone halfway along its length.

View Article and Find Full Text PDF

Stomata are the pores in the epidermal surface of plant leaves that regulate the exchange of water and CO with the environment thus controlling leaf gas exchange. In the model dicot plant Arabidopsis thaliana, the transcription factors SPEECHLESS (SPCH) and MUTE sequentially control formative divisions in the stomatal lineage by forming heterodimers with ICE1. SPCH regulates entry into the stomatal lineage and its stability or activity is regulated by a mitogen-activated protein kinase (MAPK) signaling cascade, mediated by its interaction with ICE1.

View Article and Find Full Text PDF

An alternative to plant biomass of various origins are forest logging residues. They differ significantly from other, previously used plant materials. This difference is due to the heterogeneous composition and relatively large size of individual particles.

View Article and Find Full Text PDF

Reversible cellular senescence was demonstrated previously to constitute colon cancer cell response to methotrexate. The current study presents a comparison of two senescent states of colon cancer cells, arrested and reversing, resulting from respectively, 120 h exposure to the drug, and 48 h exposure followed by 96 h regrowth in drug-free media. The upregulation of immunoproteasome subunit-coding genes and the increase in human leukocyte antigen HLA-A/B/C membrane level indicated MHC-I-restricted antigen presentation as common to both senescent states.

View Article and Find Full Text PDF

As the possibilities of CRISPR-Cas9 technology have been revealed, we have entered a new era of research aimed at increasing its specificity and safety. This stage of technology development is necessary not only for its wider application in the clinic but also in basic research to better control the process of genome editing. Research during the past eight years has identified some factors influencing editing outcomes and led to the development of highly specific endonucleases, modified guide RNAs and computational tools supporting experiments.

View Article and Find Full Text PDF

In this work, for modelling the anaerobic digestion of microcrystalline cellulose, two surface-related models based on cylindrical and spherical particles were developed and compared with the first-order kinetics model. A unique dataset consisting of particles with different sizes, the same crystallinity and polymerisation degree was used to validate the models. Both newly developed models outperformed the first-order kinetics model.

View Article and Find Full Text PDF

Lignocellulose is an abundant substrate for biogas production; however, for efficient utilization, proper pre-treatment is required to enhance the biomethane yield and hydrolysis rate significantly. Phenolic compounds from dissolved lignin, produced during alkali pre-treatment, have inhibitory effects on the anaerobic digestion; however, the possible inhibitory effects of solid lignin have not gathered enough interest. Especially, the effect of solid lignin on methanogenesis remains a knowledge gap.

View Article and Find Full Text PDF

The aim of this study was to investigate the pressure agglomeration process of wheat straw (WS) and the blends of WS with calcium carbonate (CC) or cassava straw (CS) with a ratio of 6% wt./wt. from seven separate fractions with sizes in the range of 0.

View Article and Find Full Text PDF

Polyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington's disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins.

View Article and Find Full Text PDF

Microparticles containing water-soluble zidovudine were prepared by spray-drying using chitosan glutamate and beta-glycerophosphate as an ion crosslinker (CF). The Box-Behnken design was applied to optimize the microparticles in terms of their drug loading and release behavior. Physicochemical studies were undertaken to support the results from dissolution tests and to evaluate the impact of the crosslinking ratio on the microparticles' characteristics.

View Article and Find Full Text PDF

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by the expansion of CAG repeats in exon 1 of the huntingtin gene (). Despite its monogenic nature, HD pathogenesis is still not fully understood, and no effective therapy is available to patients. The development of new techniques such as genome engineering has generated new opportunities in the field of disease modeling and enabled the generation of isogenic models with the same genetic background.

View Article and Find Full Text PDF

Aims: The aim of this study was to determine the relationship between electrical and mechanical activation in heart failure (HF) patients and whether electromechanical coupling is affected by scar.

Methods And Results: Seventy HF patients referred for cardiac resynchronization therapy or biological therapy underwent endocardial anatomo-electromechanical mapping (AEMM) and delayed-enhancement magnetic resonance (CMR) scans. Area strain and activation times were derived from AEMM data, allowing to correlate mechanical and electrical activation in time and space with unprecedented accuracy.

View Article and Find Full Text PDF

Huntington's disease (HD) is a hereditary neurological disorder caused by expansion of the CAG repeat tract in the huntingtin gene (HTT). The mutant protein with a long polyglutamine tract is toxic to cells, especially neurons, leading to their progressive degeneration. Similar to many other monogenic diseases, HD is a good target for gene therapy approaches, including the use of programmable endonucleases.

View Article and Find Full Text PDF

Human colon cancer C85 cell response to methotrexate has been documented previously to take on a form of reversible premature senescence. Seeking genomic aberrations encompassing candidate genes whose functional impairment could determine such a response to the drug, an array Comparative Genomic Hybridization method was applied, complemented by expression microarray data set searching. In the C85 cell genome, only short aberrations were identified, classified as focal chromosomal aberrations.

View Article and Find Full Text PDF

Genome editing technology based on engineered nucleases has been increasingly applied for targeted modification of genes in a variety of cell types and organisms. However, the methods currently used for evaluating the editing efficiency still suffer from many limitations, including preferential detection of some mutation types, sensitivity to polymorphisms that hamper mismatch detection, lack of multiplex capability, or sensitivity to assay conditions. Here, we describe qEva-CRISPR, a new quantitative method that overcomes these limitations and allows simultaneous (multiplex) analysis of CRISPR/Cas9-induced modifications in a target and the corresponding off-targets or in several different targets.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene (). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system.

View Article and Find Full Text PDF

Three crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures.

View Article and Find Full Text PDF

The response of human colon cancer C85 cells to methotrexate takes the form of reversible growth arrest of the type of stress-induced senescence. In the present study it is shown that during C85 cell progression into methotrexate-induced senescence, dihydrofolate reductase, the primary intracellular target for the drug, is stabilized at the protein level and its enzymatic activity, assayed in crude cellular extracts, decreases by 2-fold. Dihydrofolate reductase inhibition results in an increase in dihydrobiopterin level and an ultimate decrease in the tetrahydrobiopterin: dihydrobiopterin ratio in senescent cells.

View Article and Find Full Text PDF

ABCC10 (MRP7) plays a role in cellular detoxification and resistance to anticancer drugs. Since ABCC10 gene transcription in human prostate cancer CWR22Rv1 cells was found dependent on E2F binding sequence motif, ABCC10 expression in G and S phases of the cell cycle of CWR22Rv1 cells, was analyzed. The cells were synchronized in G phase by double thymidine block and in S phase by thymidine/mimosine double block.

View Article and Find Full Text PDF

Background: The nurse cell (NC) constitutes in mammalian skeletal muscles a confined intracellular niche to support the metabolic needs of muscle larvae of Trichinella spp. encapsulating species. The main biological functions of NC were identified as hypermitogenic growth arrest and pro-inflammatory phenotype, both inferred to depend on AP-1 (activator protein 1) transcription factor.

View Article and Find Full Text PDF

By seeking new stable boron-containing nucleoside derivatives, potential BNCT boron delivery agents, a novel synthetic approach was tested, aimed at a boron attachment via a single bond to an aliphatic carbon of sp(3) hybridization. The latter allowed successful modification of deoxycytidine in the reaction with 2-(iodomethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane of the deoxynucleoside amino group. For new compounds, detailed NMR, LDI HRMS (Laser Desorption/Ionization High-Resolution Mass Spectrometry) analyses along with in vivo phosphorylation studies, toxicity assays and DFT modelling are presented.

View Article and Find Full Text PDF

Background: Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T.

View Article and Find Full Text PDF