The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at Elettra is performing the first mammography study on human patients using free-space propagation phase contrast imaging. The stricter spatial resolution requirements of this method currently force the use of conventional films or specialized computed radiography (CR) systems. This also prevents the implementation of three-dimensional (3D) approaches.
View Article and Find Full Text PDFIn this note we present the first proof-of-concept results on the potential effectiveness of the edge-illumination x-ray phase contrast method (in its 'coded-aperture' based lab implementation) combined with tomosynthesis. We believe that, albeit admittedly preliminary (e.g.
View Article and Find Full Text PDFThe mouse model of osteoarthritis (OA) has been recognized as the most promising research tool for the identification of new OA therapeutic targets. However, this model is currently limited by poor throughput, dependent on the extremely time-consuming histopathology assessment of the articular cartilage (AC). We have recently shown that AC in the rat tibia can be imaged both in air and in saline solution using a laboratory system based on coded-aperture X-ray phase-contrast imaging (CAXPCi).
View Article and Find Full Text PDFWe recently demonstrated how quantitative X-ray phase contrast imaging may be performed with laboratory sources using the coded aperture technique. This technique required the knowledge of system parameters such as, for example, the source focal spot size and distances between elements of the imaging system. The method also assumes that the absorbing regions of the apertures are perfectly absorbing.
View Article and Find Full Text PDFBeing able to quantitatively assess articular cartilage in three-dimensions (3D) in small rodent animal models, with a simple laboratory set-up, would prove extremely important for the development of pre-clinical research focusing on cartilage pathologies such as osteoarthritis (OA). These models are becoming essential tools for the development of new drugs for OA, a disease affecting up to 1/3 of the population older than 50 years for which there is no cure except prosthetic surgery. However, due to limitations in imaging technology, high-throughput 3D structural imaging has not been achievable in small rodent models, thereby limiting their translational potential and their efficiency as research tools.
View Article and Find Full Text PDF