Publications by authors named "Magdalena A Lam"

Aquaporin-4 (AQP4) has been implicated in post-traumatic syringomyelia (PTS), a disease characterised by the formation of fluid-filled cysts in the spinal cord. This study investigated the expression of AQP4 around a mature cyst (syrinx) and the effect of pharmacomodulation of AQP4 on syrinx size. PTS was induced in male Sprague-Dawley rats by computerized spinal cord impact and subarachnoid kaolin injection.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) is thought to flow into the brain via perivascular spaces around arteries, where it mixes with interstitial fluid. The precise details concerning fluid outflow remain controversial. Although fluid dynamics have been studied in the brain, little is known about spinal cord fluid inflow and outflow.

View Article and Find Full Text PDF

Perivascular spaces play a pivotal role in the exchange between cerebrospinal and interstitial fluids, and in the clearance of waste in the CNS, yet their precise anatomical components are not well described. The aim of this study was to characterise the ultrastructure of perivascular spaces and their role in the transport of fluid, in the spinal cord of healthy rats, using transmission electron microscopy. The distribution of cerebrospinal fluid tracers injected into the subarachnoid space was studied using light, confocal and electron microscopy.

View Article and Find Full Text PDF

Proteins are major biological targets for oxidative damage within cells because of their high abundance and rapid rates of reaction with radicals and singlet oxygen. These reactions generate high yields of hydroperoxides. The turnover of both native and modified/damaged proteins is critical for maintaining cell homeostasis, with this occurring via the proteasomal and endosomal-lysosomal systems; the former is of particular importance for intracellular proteins.

View Article and Find Full Text PDF

Nitric oxide ((*)NO) may act as either a pro-oxidant or an antioxidant in biological systems. Although (*)NO and nitroxide radicals react slowly with most molecules, they react at near diffusion-controlled rates with other radicals and may therefore be efficient protective agents. This study assessed the ability of (*)NO and nitroxides to intercept specific protein-derived radicals and compared the efficacy of these species.

View Article and Find Full Text PDF