Race 1 strains of pv. , which cause bacterial speck disease of tomato, are becoming increasingly common and no simply inherited genetic resistance to such strains is known. We discovered that a locus in , termed (), confers resistance to race 1 pv.
View Article and Find Full Text PDFA severe outbreak of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, occurred in central New York in 2009. Isolate 09150, collected from this outbreak and subsequently named NYS-T1, was found to be highly virulent on tomato.
View Article and Find Full Text PDFThe Asian citrus psyllid, Kuwayama (Hemiptera: Psyllidae) is a vector for the causative agents of Huanglongbing, which threatens citrus production worldwide. This study reports and discusses the first transcriptomes, encompassing the three main life stages of , egg, nymph and adult. The transcriptomes were annotated using Gene Ontology (GO) and insecticide-related genes within each life stage were identified to aid the development of future insecticides.
View Article and Find Full Text PDFBacterial plant pathogens rely on a battalion of transcription factors to fine-tune their response to changing environmental conditions and to marshal the genetic resources required for successful pathogenesis. Prediction of transcription factor binding sites (TFBS) represents an important tool for elucidating regulatory networks and has been conducted in multiple genera of plant-pathogenic bacteria for the purpose of better understanding mechanisms of survival and pathogenesis. The major categories of TFBS that have been characterized are reviewed here, with emphasis on in silico methods used for site identification and challenges therein, their applicability to different types of sequence datasets, and insights into mechanisms of virulence and survival that have been gained through binding-site mapping.
View Article and Find Full Text PDFCompared to those of dicot-infecting bacteria, the available genome sequences of bacteria that infect wheat and barley are limited. Herein, we report the draft genome sequences of four pseudomonads originally isolated from these cereals. These genome sequences provide a useful resource for comparative analyses within the genus and for cross-kingdom analyses of plant pathogenesis.
View Article and Find Full Text PDFDiaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D.
View Article and Find Full Text PDFGenome sequence analyses of bacterial plant pathogens are revealing important insights into the molecular determinants of pathogenicity and, through transcript characterization, responses to environmental conditions, evidence for small RNAs, and validation of uncharacterized genes. Genome comparison sheds further light on the processes impacting pathogen evolution and differences in gene repertoire among isolates contributing to niche specialization. Information derived from pathogen genome analysis is providing tools for use in diagnosis and interference with host-pathogen interactions for the purpose of disease control.
View Article and Find Full Text PDFMany plant pathogens subvert host immunity by injecting compositionally diverse but functionally similar repertoires of cytoplasmic effector proteins. The bacterial pathogen Pseudomonas syringae is a model for exploring the functional structure of such repertoires. The pangenome of P.
View Article and Find Full Text PDFRecently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato.
View Article and Find Full Text PDFDickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.
View Article and Find Full Text PDFGenome enabled research has led to a large and ever-growing body of data on Pseudomonas syringae genome variation and characteristics, though systematic capture of this information to maximize access by the research community remains a significant challenge. Major P. syringae data streams include genome sequence data, newly identified type III effectors, biological characterization data for type III effectors, and regulatory feature characterization.
View Article and Find Full Text PDFMicrobes form intimate relationships with hosts (symbioses) that range from mutualism to parasitism. Common microbial mechanisms involved in a successful host association include adhesion, entry of the microbe or its effector proteins into the host cell, mitigation of host defenses, and nutrient acquisition. Genes associated with these microbial mechanisms are known for a broad range of symbioses, revealing both divergent and convergent strategies.
View Article and Find Full Text PDFTo fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology.
View Article and Find Full Text PDFThe discovery 45 years ago that many Pseudomonas syringae pathovars elicit the hypersensitive response in plant species other than their hosts fostered the use of these bacteria as experimental models. However, the basis for host specificity and the corresponding resistance of nonhosts remain unclear. Pseudomonas syringae is now known to inject into the host cytoplasm, via the type III secretion system, effector proteins that suppress basal innate immunity, but may be recognized by cognate resistance (R) proteins in a second level of defence.
View Article and Find Full Text PDFDisease development is determined by the interplay of host defense processes and pathogen factors that subvert defenses and remodel the host for parasitic benefit. The goal of the Plant-Associated Microbe Gene Ontology (PAMGO) interest group is the development of Gene Ontology (GO) terms that capture the range of biological processes occurring between hosts and symbionts (from mutualists to pathogens). Here, the application of the new GO terms to type III effector proteins (T3Es) from the plant pathogen Pseudomonas syringae serves as an example to systematically document the available extensive data and to reveal shared aspects of interactions with various host plants.
View Article and Find Full Text PDFManipulation of programmed cell death (PCD) is central to many host microbe interactions. Both plant and animal cells use PCD as a powerful weapon against biotrophic pathogens, including viruses, which draw their nutrition from living tissue. Thus, diverse biotrophic pathogens have evolved many mechanisms to suppress programmed cell death, and mutualistic and commensal microbes may employ similar mechanisms.
View Article and Find Full Text PDFGenome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses.
View Article and Find Full Text PDFA wide diversity of plant-associated symbionts, including microbes, produce proteins that can enter host cells, or are injected into host cells in order to modify the physiology of the host to promote colonization. These molecules, termed effectors, commonly target the host defense signaling pathways in order to suppress the defense response. Others target the gene expression machinery or trigger specific modifications to host morphology or physiology that promote the nutrition and proliferation of the symbiont.
View Article and Find Full Text PDFCurr Opin Microbiol
February 2009
The ability of Pseudomonas syringae to grow and cause diseases in plants is dependent on the injection of multiple effector proteins into plant cells via the type III secretion system (T3SS). Genome-enabled bioinformatic/experimental methods have comprehensively identified the repertoires of effectors and related T3SS substrates for P. syringae pv.
View Article and Find Full Text PDFDiverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination.
View Article and Find Full Text PDFSystematic comparison of the current repertoire of virulence-associated genes for three Pseudomonas syringae strains with complete genome sequences, P. syringae pv. tomato DC3,000, P.
View Article and Find Full Text PDFThe pathogen-host interaction database (PHI-base) is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and Oomycete pathogens, which infect human, animal, plant, insect, fish and fungal hosts. Plant endophytes are also included. PHI-base is therefore an invaluable resource for the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention.
View Article and Find Full Text PDFThe ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P.
View Article and Find Full Text PDFPseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery.
View Article and Find Full Text PDF