Class C cephalosporinases are a growing threat, and inhibitors of these enzymes are currently unavailable. Studies exploring the YXN loop asparagine in the Escherichia coli AmpC, P99, and CMY-2 enzymes have suggested that interactions between C6' or C7' substituents on penicillins or cephalosporins and this Asn are important in determining substrate specificity and enzymatic stability. We sought to characterize the YXN loop asparagine in the clinically important ADC-7 class C β-lactamase of Acinetobacter baumannii.
View Article and Find Full Text PDFThe need to develop beta-lactamase inhibitors against class C cephalosporinases of Gram-negative pathogens represents an urgent clinical priority. To respond to this challenge, five boronic acid derivatives, including a new cefoperazone analogue, were synthesized and tested against the class C cephalosporinase of Acinetobacter baumannii [Acinetobacter-derived cephalosporinase (ADC)]. The commercially available carbapenem antibiotics were also assayed.
View Article and Find Full Text PDFThe partnering of a beta-lactam with a beta-lactamase inhibitor is a highly effective strategy that can be used to combat bacterial resistance to beta-lactam antibiotics mediated by serine beta-lactamases (EC 3.2.5.
View Article and Find Full Text PDF