The inflammatory response associated with traumatic spinal cord injury (SCI) contributes to locomotor and sensory impairments. Pro-inflammatory (M1) macrophages/microglia (MϕMG) are the major cellular players in this response as they promote chronic inflammation resulting in injury expansion and tissue damage. Fatty acid-binding protein 4 (FABP4) promotes M1 MϕMG differentiation; however, it is unknown if FABP4 also plays a role in the etiology of SCI.
View Article and Find Full Text PDFBackground And Aim: Docosahexaenoic acid (DHA) exhibits neuroprotective properties and has been shown to preserve nerve cells following trauma and ischemic injury. Recently, we showed that DHA pretreatment improved locomotion and reduced neuropathic pain after acute spinal cord injury in adult rats. These improvements were associated with an increase in the levels of AKT in spinal cord injury neurons.
View Article and Find Full Text PDFLipid overload resulting in lipotoxicity is prominent in a number of chronic diseases and has been associated with cellular dysfunction and cell death. This study characterizes palmitic acid-induced lipotoxicity (PA-LTx) in Schwann cell cultures grown in normal and high glucose concentrations. The study shows for the first time that Schwann cell (SC) cultures exposed to elevated levels of PA exhibit a dose- and time-dependent loss in cell viability.
View Article and Find Full Text PDFWe have recently shown that aortic vascular smooth muscle cells (VSMCs) from streptozotocin (STZ)-induced diabetic rats and A10 VSMCs exposed to high glucose exhibited increased levels of Gqα and PLCβ proteins. In the present study, we investigated whether the enhanced oxidative stress in hyperglycemia/diabetes contributes to the increased expression of the Gq/11α and PLCβ proteins and the associated signaling in VSMCs by using antioxidants. The levels of Gq/11α and PLCβ1/2 proteins, as determined by Western blotting, were significantly increased in A10 VSMCs exposed to high glucose and in aortic VSMCs from STZ-diabetic rats compared with control cells and were restored to control levels by antioxidants: apocynin, an NADPH oxidase inhibitor, and catalase, a scavenger of hydrogen peroxide.
View Article and Find Full Text PDFWe have recently shown that A10 vascular smooth muscle cells (VSMCs) exposed to high glucose exhibited enhanced expression of G(alpha)q and PLCbeta proteins. Since high glucose has been reported to increase the levels of vasoactive peptides and oxidative stress, the present study was undertaken to investigate the implication of angiotensin II (Ang II), endothelin (ET)-1, and oxidative stress in the high glucose-induced enhanced expression of G(alpha)q/11 and PLCbeta proteins and associated signaling in A10 VSMCs. The levels of G(alpha)q, G(alpha)11, PLCbeta-1, and PLCbeta-2 proteins, as determined by Western blotting, were significantly higher in A10 VSMCs exposed to high glucose than in control cells.
View Article and Find Full Text PDFWe have recently shown that high glucose increased the expression of Gq/11alpha, PLCbeta and mediated signaling in A10 vascular smooth muscle cells (VSMC). Since high glucose has been shown to increase growth factor receptor activation, we investigated the role of epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R) transactivation in high glucose-induced enhanced expression of Gq/11alpha and PLCbeta. Pre-treatment of A10 VSMC with high glucose (26 mM) for 3 days, increased the levels of Gqalpha, G11alpha, PLCbeta-1 and PLCbeta-2 proteins which were restored to control levels by AG1478, an inhibitor of EGF-R, AG1295, an inhibitor of PDGF-R and PP2, an inhibitor of c-Src but not by PP3.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2008
The levels and activity of protein kinase C and diacylglycerol were shown to be upregulated in diabetes/hyperglycemia; however, studies on the expression of upstream signaling molecules of phosphatidylinositol turnover were lacking. The present study was therefore undertaken to examine whether hyperglycemia/diabetes could also modulate the expression of Gqalpha and phospholipase C-beta (PLC-beta) proteins and associated phosphatidylinositol turnover signaling in aortic vascular smooth muscle cells (VSMCs) and A10 VSMCs exposed to high glucose. Aortic VSMCs from streptozotocin-diabetic rats exhibited an increased expression of Gqalpha and PLC-beta1 proteins (60% and 30%, respectively) compared with control cells as determined by Western blot analysis.
View Article and Find Full Text PDFWe have recently shown that aorta from streptozotocin (STZ)-induced diabetic rats and A10 vascular smooth muscle cells (VSMCs) exposed to high glucose exhibited decreased levels of inhibitory guanine nucleotide regulatory protein (Gi)alpha proteins. In the present studies, we investigated the implication of oxidative stress in the hyperglycemia/diabetes-induced decreased expression of the Gialpha protein and adenylyl cyclase signaling in VSMCs by using antioxidants. The levels of Gialpha proteins were significantly decreased in A10 VSMCs exposed to high glucose and in aortic VSMCs from STZ-diabetic rats compared with control cells and were restored to control levels by antioxidants.
View Article and Find Full Text PDFEvidence suggests that endocardial endothelial cells (EECs) may play a role in the regulation of cardiac function by releasing ET-1. Furthermore, reports in the literature suggested that differences may exist in peptide receptor distribution between the left and right EECs. In this study, we verified if the distribution and density of ET-1 and its receptors could be different in right as compared to left ventricular EECs, and whether this difference may affect ET-1-induced increase of intracellular calcium.
View Article and Find Full Text PDFThe aims of the present study were to investigate the presence and distribution of NPY and the Y1 receptor in endocardial endothelial cells (EECs), to verify if EECs can release NPY, and to determine if the effect of NPY on intracellular calcium is mediated via the Y1 receptor. Immunofluorescence, 3-D confocal microscopy and radioimmunoassay techniques were used on 20-week-old human fetal EECs. Our results showed that NPY and the Y1 receptor are present in human EECs (hEECs) and that their distributions are similar, the fluorescence labelling being higher in the nucleus and more particularly at the level of the nuclear envelope when compared with the cytosol.
View Article and Find Full Text PDF