Publications by authors named "Magarinos A"

Previous experiments charted the development of behavioral arousal in postnatal mice. From Postnatal Day 3 (P3) to Postnatal Day 6 (P6) mice (a) become significantly more active, "arousable"; and (b) in large reticular neurons, nucleus gigantocellularis (NGC), patch clamp recordings reveal a significantly increased ability to fire high frequency trains of action potentials as are associated with elevated cortical arousal. These action potential trains depend on delayed rectifiers such as Kv2.

View Article and Find Full Text PDF

Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages.

View Article and Find Full Text PDF

The study of the behavior of embryonic neurons in controlled conditions require methodologies that take advantage of advanced tissue engineering approaches to replicate elements of the developing brain extracellular matrix. We report here a series of experiments that explore the potential of photo-polymerized gelatin hydrogels to culture primary embryonic neurons. We employed large medullary reticular neurons whose activity is essential for brain arousal as well as a library of gelatin hydrogels that span a range of mechanical properties, inclusion of brain-mimetic hyaluronic acid, and adhesion peptides.

View Article and Find Full Text PDF

Impacts of steroid stress hormones on the brain have provided multiple opportunities for linking specific molecular phenomena to behavioral state. The negative impacts of stress on female reproductive biological processes have been documented thoroughly at the endocrine and behavioral levels. More recently, a '3-hit' theory of autism has identified early stress as one of the hits.

View Article and Find Full Text PDF

A well worked-out motivational system in laboratory animals produces estrogen-dependent female sex behavior. Here, we review (a) the logical definition of sexual motivation and (b) the basic neuronal and molecular mechanisms that allow the behavior to occur. Importantly, reproductive mechanisms in the female can be inhibited by stress.

View Article and Find Full Text PDF

Chronic stress is a risk factor for several neuropsychiatric diseases, such as depression and psychosis. In response to stress glucocorticoids (GCs) are secreted that bind to mineralocorticoid and glucocorticoid receptors, ligand-activated transcription factors that regulate the transcription of gene networks in the brain necessary for coping with stress, recovery, and adaptation. Chronic stress particularly affects the dentate gyrus (DG) subregion of the hippocampus, causing several functional and morphological changes with consequences for learning and memory, which are likely adaptive but at the same time make DG neurons more vulnerable to subsequent challenges.

View Article and Find Full Text PDF

Background: Monitoring minimal residual disease (MRD) by real-time quantitative polymerase chain reaction (RT-PCR) in chronic myeloid leukemia (CML) patients is mandatory in the era of tyrosine kinase inhibitors. Achieving a major molecular response (MMR) at 12 and 18 months predicts a better progression and event-free survival.

Patients And Methods: The objective of this prospective, multicentric study was to evaluate MRD by standardized RT-PCR in 178 patients with chronic-phase CML who were treated with imatinib at different institutions in Argentina and Uruguay and to determine if achievement of a stable MMR (BCR-ABL transcript levels < 0.

View Article and Find Full Text PDF

Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge.

View Article and Find Full Text PDF

There has been a dramatic rise in gene x environment studies of human behavior over the past decade that have moved the field beyond simple nature versus nurture debates. These studies offer promise in accounting for more variability in behavioral and biological phenotypes than studies that focus on genetic or experiential factors alone. They also provide clues into mechanisms of modifying genetic risk or resilience in neurodevelopmental disorders.

View Article and Find Full Text PDF

The hippocampal formation is a highly plastic brain structure that undergoes structural remodeling in response to internal and external challenges such as metabolic imbalance and repeated stress. We investigated whether the extreme alterations in metabolic status that occur during the course of hibernation in European hamsters cause structural changes in the dendritic arborizations of the CA3 pyramidal neurons and their main excitatory afferents, the mossy fiber terminals (MFT), that originate in the dentate gyrus. We report that apical, but not basal, dendritic trees of Golgi-impregnated CA3 principal neurons are significantly shorter, less branched, and less spiny in hypothermic hamsters compared with active animals.

View Article and Find Full Text PDF

Young animals respond to threatening stimuli in an age-specific way. Their endocrine and behavioral responses reflect the potential threat of the situation at a given age. The aim of the present study was to determine whether corticotropin-releasing factor (CRF) is involved in the endocrine and behavioral responses to threat and their developmental changes in young rats.

View Article and Find Full Text PDF

The hippocampal formation, a structure involved in declarative, spatial and contextual memory, undergoes atrophy in depressive illness along with impairment in cognitive function. Animal model studies have shown that the hippocampus is a particularly sensitive and vulnerable brain region that responds to stress and stress hormones. Studies on models of stress and glucocorticoid actions reveal that the hippocampus shows a considerable degree of structural plasticity in the adult brain.

View Article and Find Full Text PDF

Exposure to a deadly threat, an adult male rat, induced the release of corticosterone in 14-day-old rat pups. The endocrine stress response was decreased when the pups were reunited with their mother immediately after exposure. These findings demonstrate that social variables can reduce the consequences of an aversive experience.

View Article and Find Full Text PDF

Estrogen (E) treatment induces axospinous synapses in rat hippocampus in vivo and in cultured hippocampal neurons in vitro. To better explore the molecular mechanisms underlying this phenomenon, we have established a mouse model for E action in the hippocampus by using Golgi impregnation to examine hippocampal dendritic spine morphology, radioimmunocytochemistry (RICC) and silver-enhanced immunocytochemistry to examine expression levels of synaptic protein markers, and hippocampal-dependent object-placement memory as a behavioral readout for the actions of E. In ovariectomized mice of several strains and F(1) hybrids, the total dendritic spine density on neurons in the CA1 region was not enhanced by E treatment, a finding that differs from that in the female rat.

View Article and Find Full Text PDF

Although neuronal stress circuits have been identified, little is known about the mechanisms that underlie the stress-induced neuronal plasticity leading to fear and anxiety. Here we found that the serine protease tissue-plasminogen activator (tPA) was upregulated in the central and medial amygdala by acute restraint stress, where it promoted stress-related neuronal remodeling and was subsequently inhibited by plasminogen activator inhibitor-1 (PAI-1). These events preceded stress-induced increases in anxiety-like behavior of mice.

View Article and Find Full Text PDF

The hippocampal formation, a structure involved in declarative, spatial and contextual memory, is a particularly sensitive and vulnerable brain region to stress and stress hormones. The hippocampus shows a considerable degree of structural plasticity in the adult brain. Stress suppresses neurogenesis of dentate gyrus granule neurons, and repeated stress causes atrophy of dendrites in the CA3 region.

View Article and Find Full Text PDF

Objectives: The goal is to review the plasticity and vulnerability of the hippocampus, a brain structure involved in episodic, declarative, contextual and spatial learning and memory, as well as its being a component in the control of autonomic and vegetative functions such as ACTH secretion. It discusses its possible role in the regulation of glucose homeostasis, and the need of hippocampal neurons for glucose because of their high metabolic activity. The hippocampus is also vulnerable to damage by stroke and head trauma and susceptible to damage during aging and repeated stress, and is sensitive to the effects of diabetes.

View Article and Find Full Text PDF

Synapsin III is the most recently identified member of the synapsin family, a group of synaptic vesicle proteins that play essential roles in neurotransmitter release and neurite outgrowth. Here, through the generation and analysis of synapsin III knock-out mice, we demonstrate that synapsin III regulates neurotransmitter release in a manner that is distinct from that of synapsin I or synapsin II. In mice lacking synapsin III, the size of the recycling pool of synaptic vesicles was increased, and synaptic depression was reduced.

View Article and Find Full Text PDF

The hippocampus of rats with uncontrolled insulin-dependent diabetes undergoes retraction and simplification of apical dendrites of the CA3 pyramidal neurons and synaptic rearrangements within mossy fiber terminals that could alter hippocampal connectivity and function. The intraperitoneal implantation of hydrophilic agarose macrobeads containing porcine islets for 17 days in rats with streptozotocin-induced diabetes results in normalization of body weight gain, significant control of hyperglycemia and prevention of hippocampal dendritic remodeling, and therefore, provides an effective therapeutic option.

View Article and Find Full Text PDF

We report that 9 d of uncontrolled experimental diabetes induced by streptozotocin (STZ) in rats is an endogenous chronic stressor that produces retraction and simplification of apical dendrites of hippocampal CA3 pyramidal neurons, an effect also observed in nondiabetic rats after 21 d of repeated restraint stress or chronic corticosterone (Cort) treatment. Diabetes also induces morphological changes in the presynaptic mossy fiber terminals (MFT) that form excitatory synaptic contacts with the proximal CA3 apical dendrites. One effect, synaptic vesicle depletion, occurs in diabetes as well as after repeated stress and Cort treatment.

View Article and Find Full Text PDF

Recent studies demonstrate that cellular, molecular and morphological changes induced by stress in rats are accelerated when there is a pre-existing strain upon their already compromised adaptive responses to internal or external stimuli, such as may occur with uncontrolled diabetes mellitus. The deleterious actions of diabetes and stress may increase oxidative stress in the brain, leading to increases in neuronal vulnerability. In an attempt to determine if stress, diabetes or stress+diabetes increases oxidative stress in the hippocampus, radioimmunocytochemistry was performed using polyclonal antisera that recognize proteins conjugated by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE).

View Article and Find Full Text PDF

Male rats housed in mixed-sex groups in a visible burrow system (VBS) form a dominance hierarchy in which subordinate animals show stress-related changes in behavior, endocrine function and neurochemistry. Dominants also appear to be moderately stressed compared to controls, although these animals do not develop the more pronounced behavioral and physiological deficits seen in the subordinates. In the present study, we examined the effects of chronic psychosocial stress on the morphology of Golgi-impregnated CA3 pyramidal neurons.

View Article and Find Full Text PDF

Previous studies from our laboratory demonstrated that chronic stress produces molecular, morphological, and ultrastructural changes in the rat hippocampus that are accompanied by cognitive deficits. Glucocorticoid impairment of glucose utilization is proposed as a causative factor involved in stress-induced changes. Current studies have examined the neurological changes induced by stress in rats with a preexisting strain upon their homeostatic load--namely, in streptozotocin (stz)-diabetic rats.

View Article and Find Full Text PDF

This study investigated whether 21 days of restraint stress (6 hr/day) and the subsequent hippocampal dendritic atrophy would affect fear conditioning, a memory task with hippocampal-dependent and hippocampal-independent components. Restraint-stressed rats were injected daily (21 days) with tianeptine (10 mg/kg; to prevent hippocampal atrophy) or vehicle then tested on fear conditioning (Days 23-25, with 2 tone-shock pairings) and open field (Day 25). Restraint stress enhanced freezing to context (hippocampal-dependent behavior) and tone (hippocampal-independent) and decreased open-field exploration, irrespective of whether tianeptine was given.

View Article and Find Full Text PDF

Our main goal was to evaluate the CD34+ dose in patients undergoing haemotopoietic stem celltransplantation and its results in terms of recovery of neutrophile and platelet counts, transfusion requirements, days of fever, antibiotic requirements and length of hospital stay. We studied 38 consecutive patients with haematological malignancies transplanted at our Department, from Feb. 96 through Sept.

View Article and Find Full Text PDF