Publications by authors named "Magalie S Leduc"

Article Synopsis
  • The study identifies 15 new genetic alterations linked to KCNK9 imprinting syndrome (KIS) by analyzing 47 affected individuals, revealing a diverse genetic and phenotypic spectrum.
  • It highlights common symptoms of KIS, such as motor and speech delays, intellectual disabilities, and behavioral issues, while also discovering an additional mutational hotspot in the gene involved.
  • The research emphasizes that KIS is characterized by complex channel function alterations, which can aid in molecular diagnosis since clinical features alone are insufficient for identification.
View Article and Find Full Text PDF

Background: Uniparental disomy (UPD) is the inheritance of two homologous chromosomes from the same parent. UPD may result in clinical phenotypes when occurring on chromosomes with specific imprinting pattern, when leading to homozygosity of a deleterious recessive allele inherited from one carrier parent, or when associated with a mosaic aneuploidy. Due to the importance of UPD in genetic disease etiology, UPD analysis has started to be implemented in the context of exome sequencing (ES) or genome sequencing.

View Article and Find Full Text PDF

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes.

View Article and Find Full Text PDF

Purpose: To provide a validated method to confidently identify exon-containing copy-number variants (CNVs), with a low false discovery rate (FDR), in targeted sequencing data from a clinical laboratory with particular focus on single-exon CNVs.

Methods: DNA sequence coverage data are normalized within each sample and subsequently exonic CNVs are identified in a batch of samples, when the target log ratio of the sample to the batch median exceeds defined thresholds. The quality of exonic CNV calls is assessed by C-scores (Z-like scores) using thresholds derived from gold standard samples and simulation studies.

View Article and Find Full Text PDF
Article Synopsis
  • * A study identified 19 individuals with various health issues such as growth failure and microcephaly, all linked to genetic changes in the ZMIZ1 gene, including single-nucleotide variants and translocations.
  • * Experiments showed that mutations in ZMIZ1 lead to problems in brain cell development in mice, indicating its critical role in neural development and confirming its link to a rare neurodevelopmental syndrome.
View Article and Find Full Text PDF

De variants in account for 1-3% of unexplained intellectual disability (ID) cases and are amongst the most common causes of ID especially in females. Forty-seven patients (44 females, 3 males) have been described. We identified 31 additional individuals carrying 29 unique variants, including 30 postnatal individuals with complex clinical presentations of developmental delay or ID, and one fetus with abnormal ultrasound findings.

View Article and Find Full Text PDF

The role of disturbed chromatin remodeling in the pathogenesis of intellectual disability (ID) is well established and illustrated by de novo mutations found in a plethora of genes encoding for proteins of the epigenetic regulatory machinery. We describe mutations in the "SET nuclear proto-oncogene" (SET), encoding a component of the "inhibitor of histone acetyltransferases" (INHAT) complex, involved in transcriptional silencing. Using whole exome sequencing, four patients were identified with de novo mutations in the SET gene.

View Article and Find Full Text PDF

PRR12 encodes a proline-rich protein nuclear factor suspected to be involved in neural development. Its nuclear expression in fetal brains and in the vision system supports its role in brain and eye development more specifically. However, its function and potential role in human disease has not been determined.

View Article and Find Full Text PDF

Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, to our knowledge, the contribution of single-gene disorders in this group is undetermined.

Objective: To determine the diagnostic yield and use of clinical exome sequencing in critically ill infants.

Design, Setting, And Participants: Clinical exome sequencing was performed for 278 unrelated infants within the first 100 days of life who were admitted to Texas Children's Hospital in Houston, Texas, during a 5-year period between December 2011 and January 2017.

View Article and Find Full Text PDF

Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa).

View Article and Find Full Text PDF

DNA alterations in the 1q43-q44 region are associated with syndromic neurodevelopmental disorders characterized by global developmental delay, intellectual disability, dysmorphic features, microcephaly, seizures, and agenesis of the corpus callosum. HNRNPU is located within the 1q43-q44 region and mutations in the gene have been reported in patients with early infantile epileptic encephalopathy. Here, we report on the clinical presentation of four patients with de novo heterozygous HNRNPU loss-of-function mutations detected by clinical whole exome sequencing: c.

View Article and Find Full Text PDF

Mutations in CRIPT encoding cysteine-rich PDZ domain-binding protein are rare, and to date have been reported in only two patients with autosomal recessive primordial dwarfism and distinctive facies. Here, we describe a female with biallelic mutations in CRIPT presenting with postnatal growth retardation, global developmental delay, and dysmorphic features including frontal bossing, high forehead, and sparse hair and eyebrows. Additional clinical features included high myopia, admixed hyper- and hypopigmented macules primarily on the face, arms, and legs, and syndactyly of 4-5 toes bilaterally.

View Article and Find Full Text PDF

The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.

View Article and Find Full Text PDF

Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases.

View Article and Find Full Text PDF

Background: Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders.

Methods: We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients.

Results: We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing.

View Article and Find Full Text PDF

Chronic kidney disease is a common disease with increasing prevalence in the western population. One common reason for chronic kidney failure is diabetic nephropathy. Diabetic nephropathy and hyperglycemia are characteristics of the mouse inbred strain KK/HlJ, which is predominantly used as a model for metabolic syndrome due to its inherited glucose intolerance and insulin resistance.

View Article and Find Full Text PDF

A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus.

View Article and Find Full Text PDF

To identify genetic loci influencing lipid levels, we performed quantitative trait loci (QTL) analysis between inbred mouse strains MRL/MpJ and SM/J, measuring triglyceride levels at 8 weeks of age in F2 mice fed a chow diet. We identified one significant QTL on chromosome (Chr) 15 and three suggestive QTL on Chrs 2, 7, and 17. We also carried out microarray analysis on the livers of parental strains of 282 F2 mice and used these data to find cis-regulated expression QTL.

View Article and Find Full Text PDF

Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels.

View Article and Find Full Text PDF

Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints.

View Article and Find Full Text PDF

Identifying the genes underlying quantitative trait loci (QTL) for disease is difficult, mainly because of the low resolution of the approach and the complex genetics involved. However, recent advances in bioinformatics and the availability of genetic resources now make it possible to narrow the genetic intervals, test candidate genes, and define pathways affected by these QTL. In this study, we mapped three significant QTL and one suggestive QTL for an increased albumin-to-creatinine ratio on chromosomes (Chrs) 1, 4, 15, and 17, respectively, in a cross between the inbred MRL/MpJ and SM/J strains of mice.

View Article and Find Full Text PDF

A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci analyses to identify chromosome regions harboring genes influencing red cell hemoglobin concentration using the cell hemoglobin concentration mean (CHCM), a directly measured parameter analogous to the mean cell hemoglobin concentration. Fourteen significant loci (gene symbols Chcmq1-Chcmq14) were detected.

View Article and Find Full Text PDF

The IGF-1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF-1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF-1 levels. Quantitative trait loci (QTL) analysis of IGF-1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb).

View Article and Find Full Text PDF

Two high-density lipoprotein cholesterol quantitative trait loci (QTL), Hdlq1 at 125 Mb and Hdlq8 at 113 Mb, were previously identified on mouse distal chromosome 5. Our objective was to identify the underlying genes. We first used bioinformatics to narrow the Hdlq1 locus to 56 genes.

View Article and Find Full Text PDF