Two-component systems are widespread prokaryotic signal transduction devices which allow the regulation of cellular functions in response to changing environmental conditions. The two-component system DccRS (Cj1223c-Cj1222c) of Campylobacter jejuni is important for the colonization of chickens. Here, we dissect the DccRS system in more detail and provide evidence that the sensor DccS selectively phosphorylates the cognate effector, DccR.
View Article and Find Full Text PDFThe species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni.
View Article and Find Full Text PDFThe species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C.
View Article and Find Full Text PDFBackground: Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS) serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome.
View Article and Find Full Text PDFThe bacterial pathogen Campylobacter jejuni carries several putative two-component signal transduction systems of unknown function. Here we report that the PhosS (Cj0889) and PhosR (Cj0890) proteins constitute a two-component system that is activated by phosphate limitation. Microarray analysis, real-time RT-PCR, and primer extension experiments indicated that this system regulates 12 genes (including the pstSCAB genes) present in three transcriptional units.
View Article and Find Full Text PDFThis study was initiated to characterize a small Xylella fastidiosa (X. fastidiosa) plasmid and attempt to create a X. fastidosa/Escherichia coli shuttle vector that was stable in planta.
View Article and Find Full Text PDFXylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X.
View Article and Find Full Text PDFSUMMARY The Gram-negative, fastidious bacterium Xylella fastidiosa was successfully transformed with two RSF1010 derivative plasmids belonging to the incompatibility group IncQ, using electroporation. These two derivative plasmids, pXF004 and pXF005, were found to be present as autonomous, structurally unchanged DNA molecules when propagated in X. fastidiosa.
View Article and Find Full Text PDF