Publications by authors named "Magali Quirin"

In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-β ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood.

View Article and Find Full Text PDF

Dorsal-ventral axis formation in the sea urchin embryo relies on the asymmetrical expression of the TGFβ Nodal. The p38-MAPK pathway has been proposed to be essential for dorsal-ventral axis formation by acting upstream of expression. Here, we report that, in contrast to previous studies that used pharmacological inhibitors of p38, manipulating the activity of p38 by genetic means has no obvious impact on morphogenesis.

View Article and Find Full Text PDF

Echinoderms, which are phylogenetically related to vertebrates and produce large numbers of transparent embryos that can be experimentally manipulated, offer many advantages for the analysis of the gene regulatory networks (GRN) regulating germ layer formation. During development of the sea urchin embryo, the ectoderm is the source of signals that pattern all three germ layers along the dorsal-ventral axis. How this signaling center controls patterning and morphogenesis of the embryo is not understood.

View Article and Find Full Text PDF

Nodal factors play fundamental roles in induction and patterning of the mesoderm and endoderm in vertebrates, but whether this reflects an ancient role or one that evolved recently in vertebrates is not known. Here, we report that in addition to its primary role in patterning the ectoderm, sea urchin Nodal is crucial for patterning of the endoderm and skeletogenic mesoderm through the regulation of the expression of key transcription factors and signalling molecules, including BMP2/4 and FGFA. In addition, we uncovered an essential role for Nodal and BMP2/4 in the formation and patterning of the non-skeletogenic mesoderm.

View Article and Find Full Text PDF

Phagocytosis is important during development and in the immune response for the removal of apoptotic cells and pathogens, yet its molecular mechanisms are poorly understood. In Caenorhabditis elegans, the CED2/5/10/12 pathway regulates actin during phagocytosis of apoptotic cells, whereas the role of the CED1/6/7 pathway in phagocytosis is unclear. We report that Undertaker (UTA), a Drosophila Junctophilin protein, is required for Draper (CED-1 homolog)-mediated phagocytosis.

View Article and Find Full Text PDF

The TGF-beta family member Nodal is essential for specification of the dorsal-ventral axis of the sea urchin embryo, but the molecular factors regulating its expression are not known. Analysis of the nodal promoter is an excellent entry point to identify these factors and to dissect the regulatory logic driving dorsal-ventral axis specification. Using phylogenetic footprinting, we delineated two regulatory regions located in the 5' region of the nodal promoter and in the intron that are required for correct spatial expression and for autoregulation.

View Article and Find Full Text PDF