Publications by authors named "Magali Moreau"

During adulthood, the skin microbiota can be relatively stable if environmental conditions are also stable, yet physiological changes of the skin with age may affect the skin microbiome and its function. The microbiome is an important factor to consider in aging since it constitutes most of the genes that are expressed on the human body. However, severity of specific aging signs (one of the parameters used to measure "apparent" age) and skin surface quality (e.

View Article and Find Full Text PDF

Background: Although acne is a prevalent multifactorial inflammatory skin condition, few studies were performed in multiethnic populations.

Objectives: To study the prevalence and determinants of acne in a multiethnic study at the start of puberty.

Methods: This cross-sectional study is embedded in Generation R, a population-based prospective study from Rotterdam, the Netherlands.

View Article and Find Full Text PDF

Introduction: Acne vulgaris (acne) is characterized by both inflammatory and non-inflammatory lesions. Benzoyl peroxide (BPO) 5% is approved to treat acne but may cause skin irritation and/or contact allergy.

Objectives: To compare the benefit in acne of a multitargeted dermocosmetic cream containing salicylic acid, lipohydroxy acid, niacinamide, 2-oleamido-1,3-octadecanediol, piroctone olamine, zinc, Aqua posae filiformis, and thermal spring water (DC-Eff) to BPO 5% gel.

View Article and Find Full Text PDF

Management of groundwater quality is assisted by an understanding of reference conditions, which describe the concentration ranges expected for key substances in the absence of human impact. This study evaluates reference conditions for NO-N in New Zealand groundwater based on three complementary methods: hierarchical cluster analysis, relationships to groundwater age, and regression against a measure of land-use impact. The three methods result in very similar national-scale estimates of reference conditions for NO-N concentration in oxic, minimally impacted groundwater, with the 80th, 90th and 95th percentiles found to be 1.

View Article and Find Full Text PDF

A dysfunctional epidermal barrier, which may be associated with mutations in the filaggrin gene in genetically predisposed individuals or harmful effects of environmental agents and allergens, contributes to the development of atopic dermatitis (AD) due to an interplay between the epithelial barrier, immune defence and the cutaneous microbiome. The skin of patients with AD is frequently over-colonized by biofilm-growing Staphylococcus aureus, especially during flares, causing dysbiosis of the cutaneous microbiota and a decrease in bacterial diversity that inversely correlates with AD severity. Specific changes in the skin microbiome can be present before clinical AD onset in infancy.

View Article and Find Full Text PDF

The infiltration of secondary treated effluent (STE) into the soil downstream of wastewater treatment plants is becoming increasingly common in a climate change context. In STE infiltration, STE is discharged onto the soil over a large surface allowing for a gradual infiltration of the water. This paper investigates a novel time-lapse electrical resistivity tomography strategy to evaluate the impact of STE infiltration on the water pathways of two planted loamy-soil trenches located in a Fluvisol region in southwestern France.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic skin condition affecting an increasing number of children and adults whose quality of life is impacted by chronic itch and pain. It is characterized by an altered epidermal barrier, skin inflammation, and skin microbiome dysbiosis particularly over-colonization of Staphylococcus aureus. The efficacy and tolerance of a cream containing a S.

View Article and Find Full Text PDF

To effectively manage sustainably groundwater bodies, it is essential to establish what the naturally occurring ranges of chemical concentrations in groundwaters are and how they change over time. We defined baseline trends for New Zealand groundwaters using: 1) pattern recognition techniques to deal with inconsistent monitoring suites between the national (110 sites) and the denser regional network (>1000 sites), and 2) multivariate statistics to identify and remove impacted sites from the enhanced dataset. Rates of changes were calculated for 13 parameters between January 2005 and December 2014 at more than 1000 groundwater quality monitoring sites.

View Article and Find Full Text PDF

Emerging organic contaminants (EOCs) are manufactured compounds, used for a range of purposes, that are a rising concern for freshwater quality, human and aquatic health. Their occurrence in groundwater has been demonstrated in several international surveys. We conducted the first baseline survey on EOC occurrence in New Zealand groundwater, using a wide-screening approach (723 compounds) and a novel stratified to mean residence time (MRT) randomised design to inform future monitoring.

View Article and Find Full Text PDF

Groundwater is a major source of New Zealand's water supply and supports base flows in rivers. Microbial communities in groundwater ecosystems mediate biogeochemical processes, and it is therefore crucial to understand microbial diversity in these ecosystems. We analysed bacterial assemblages from 35 New Zealand groundwater monitoring sites with varying hydrogeochemical conditions across the country.

View Article and Find Full Text PDF

Polyfunctional indoles bearing substituents at C5 and C6 are prevalent in natural products, pharmaceuticals, agrochemicals, and materials. Owing to the remoteness of the C5 and C6 positions, indoles of this family can be difficult to prepare, and often require multistep syntheses. Herein, we describe a concise process that converts simple derivatives of tyrosine into 5,6-difunctionalized indoles by direct oxidation of C-H, N-H, and O-H bonds.

View Article and Find Full Text PDF

Damage-associated molecular pattern molecules (DAMPs) signal the presence of tissue damage to induce immune responses in plants and animals. Here, we report that High Mobility Group Box 3 (HMGB3) is a novel plant DAMP. Extracellular HMGB3, through receptor-like kinases BAK1 and BKK1, induced hallmark innate immune responses, including i) MAPK activation, ii) defense-related gene expression, iii) callose deposition, and iv) enhanced resistance to Botrytis cinerea.

View Article and Find Full Text PDF

Salicylic acid (SA) and its derivatives have been used for millennia to reduce pain, fever and inflammation. In addition, prophylactic use of acetylsalicylic acid, commonly known as aspirin, reduces the risk of heart attack, stroke and certain cancers. Because aspirin is rapidly de-acetylated by esterases in human plasma, much of aspirin's bioactivity can be attributed to its primary metabolite, SA.

View Article and Find Full Text PDF

Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood.

View Article and Find Full Text PDF

Thimet oligopeptidase (TOP) is a zinc-dependent metallopeptidase. Recent studies suggest that Arabidopsis thaliana TOP1 and TOP2 are targets for salicylic acid (SA) binding and participate in SA-mediated plant innate immunity. The crystal structure of A.

View Article and Find Full Text PDF

Salicylic acid (SA) is a small phenolic molecule with hormonal properties, and is an essential component of the immune response. SA exerts its functions by interacting with protein targets; however, the specific cellular components modulated by SA and critical for immune signal transduction are largely unknown. To uncover cellular activities targeted by SA, we probed Arabidopsis protein microarrays with a functional analog of SA.

View Article and Find Full Text PDF

Arabidopsis thaliana CRT1 (compromised for recognition of Turnip Crinkle Virus) was previously shown to be required for effector-triggered immunity. Sequence analyses previously revealed that CRT1 contains the ATPase and S5 domains characteristic of Microchidia (MORC) proteins; these proteins are associated with DNA modification and repair. Here we show that CRT1 and its closest homologue, CRH1, are also required for pathogen-associated molecular pattern (PAMP)-triggered immunity, basal resistance, non-host resistance and systemic acquired resistance.

View Article and Find Full Text PDF

Salicylic acid (SA) is widely recognized as a key player in plant immunity. While several proteins have been previously identified as the direct targets of SA, SA-mediated plant defense signaling mechanisms remain unclear. The Nature paper from Xinnian Dong's group demonstrates that the NPR1 paralogues NPR3 and NPR4 directly bind SA, and this binding modulates their interaction with NPR1 and thereby degradation of this key positive regulator of SA-mediated defense, shedding important new insight into the mechanism(s) of SA-mediated, NPR1-dependent plant defense signal transduction.

View Article and Find Full Text PDF

Crystal structures of nitric oxide synthases (NOS) isoforms have shown the presence of a strongly conserved heme active-site residue, Tyr588 (numbering for rat neuronal NOS, nNOS). Preliminary biochemical studies have highlighted its importance in the binding and oxidation to NO of natural substrates L-Arg and N(omega)-hydroxy-L-arginine (NOHA) and suggested its involvement in mechanism. We have used UV-visible and EPR spectroscopy to investigate the effects of the Tyr588 to Phe mutation on the heme-distal environment, on the binding of a large series of guanidines and N-hydroxyguanidines that differ from L-Arg and NOHA by the nature of their alkyl- or aryl-side chain, and on the abilities of wild type (WT) and mutant to oxidize these analogues with formation of NO.

View Article and Find Full Text PDF

Nitric-oxide synthases (NOS) are highly regulated heme-thiolate enzymes that catalyze two oxidation reactions that sequentially convert the substrate L-Arg first to N(omega)-hydroxyl-L-arginine and then to L-citrulline and nitric oxide. Despite numerous investigations, the detailed molecular mechanism of NOS remains elusive and debatable. Much of the dispute in the various proposed mechanisms resides in the uncertainty concerning the number and sources of proton transfers.

View Article and Find Full Text PDF

Over the past 20 years, nitric oxide (NO) research has generated a lot of interest in various aspects of plant biology. It is now clear that NO plays a role in a wide range of physiological processes in plants. However, in spite of the significant progress that has been made in understanding NO biosynthesis and signaling in planta, several crucial questions remain unanswered.

View Article and Find Full Text PDF

Deinococcus radiodurans (Dr) withstands desiccation, reactive oxygen species, and doses of radiation that would be lethal to most organisms. Deletion of a gene encoding a homolog of mammalian nitric oxide synthase (NOS) severely compromises the recovery of Dr from ultraviolet (UV) radiation damage. The Deltanos defect can be complemented with recombinant NOS, rescued by exogenous nitric oxide (NO) and mimicked in the wild-type strain with an NO scavenging compound.

View Article and Find Full Text PDF

AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported.

View Article and Find Full Text PDF

NO-Synthases are heme proteins that catalyze the oxidation of L-arginine into NO and L-citrulline. Some non-amino acid alkylguanidines may serve as substrates of inducible NOS (iNOS), while no NO* production is obtained from arylguanidines. All studied guanidines induce uncoupling between electrons transferred from the reductase domain and those required for NO formation.

View Article and Find Full Text PDF

Nitric oxide (NO) is synthesised by a two-step oxidation of -arginine (L-Arg) in the active site of nitric oxide synthase (NOS) with formation of an intermediate, N omega-hydroxy-L-Arg (NOHA). Crystal structures of NOSs have shown the importance of an active-site Val567 residue (numbered for rat neuronal NOS, nNOS) interacting with non-amino acid substrates. To investigate the role of this Val residue in substrate recognition and NO-formation activity by nNOS, we generated and purified four Val567 mutants of nNOS, Val567Leu, Val567Phe, Val567Arg and Val567Glu.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona3gbls3skv1hq19dnn4bh636bnjupun4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once