Various origin mapping approaches have enabled genome-wide identification of origins of replication (ORI) in model organisms, but only a few studies have focused on divergent organisms. By employing three complementary approaches we provide a high-resolution map of ORIs in Plasmodium falciparum, the deadliest human malaria parasite. We profiled the distribution of origin of recognition complex (ORC) binding sites by ChIP-seq of two PfORC subunits and mapped active ORIs using NFS and SNS-seq.
View Article and Find Full Text PDFLittle is known about replication fork velocity variations along eukaryotic genomes, since reference techniques to determine fork speed either provide no sequence information or suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based method to map and extract the velocity of individual forks detected as tracks of the thymidine analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine incorporation and wild-type growth, and precisely quantifies speed changes in cells with altered replisome progression or exposed to hydroxyurea.
View Article and Find Full Text PDFMost genome replication mapping methods profile cell populations, masking cell-to-cell heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map replication of single DNA molecules at 200 nucleotide resolution using a nanopore current interpretation tool allowing the quantification of BrdU incorporation. Along pulse-chased replication intermediates from Saccharomyces cerevisiae, we can orient replication tracks and reproduce population-based replication directionality profiles.
View Article and Find Full Text PDFGenome replication mapping methods profile cell populations, masking cell-to-cell heterogeneity. Here, we describe FORK-seq, a nanopore sequencing method to map replication of single DNA molecules at 200-nucleotide resolution. By quantifying BrdU incorporation along pulse-chased replication intermediates from Saccharomyces cerevisiae, we orient 58,651 replication tracks reproducing population-based replication directionality profiles and map 4964 and 4485 individual initiation and termination events, respectively.
View Article and Find Full Text PDFHuman CWC27 is an uncharacterized splicing factor and mutations in its gene are linked to retinal degeneration and other developmental defects. We identify the splicing factor CWC22 as the major CWC27 partner. Both CWC27 and CWC22 are present in published Bact spliceosome structures, but no interacting domains are visible.
View Article and Find Full Text PDFAdvanced age is not only a major risk factor for a range of disorders within an aging individual but may also enhance susceptibility for disease in the next generation. In humans, advanced paternal age has been associated with increased risk for a number of diseases. Experiments in rodent models have provided initial evidence that paternal age can influence behavioral traits in offspring animals, but the overall scope and extent of paternal age effects on health and disease across the life span remain underexplored.
View Article and Find Full Text PDFAlpha-synuclein (aSyn) is considered a major culprit in Parkinson's disease (PD) pathophysiology. However, the precise molecular function of the protein remains elusive. Recent evidence suggests that aSyn may play a role on transcription regulation, possibly by modulating the acetylation status of histones.
View Article and Find Full Text PDFBackground: Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes.
View Article and Find Full Text PDFMotile multiciliated cells (MCCs) have critical roles in respiratory health and disease and are essential for cleaning inhaled pollutants and pathogens from airways. Despite their significance for human disease, the transcriptional control that governs multiciliogenesis remains poorly understood. Here we identify TP73, a p53 homolog, as governing the program for airway multiciliogenesis.
View Article and Find Full Text PDFChromosomal domains in Drosophila are marked by the insulator-binding proteins (IBPs) dCTCF/Beaf32 and cofactors that participate in regulating long-range interactions. Chromosomal borders are further enriched in specific histone modifications, yet the role of histone modifiers and nucleosome dynamics in this context remains largely unknown. Here, we show that IBP depletion impairs nucleosome dynamics specifically at the promoters and coding sequence of genes flanked by IBP binding sites.
View Article and Find Full Text PDFEukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts.
View Article and Find Full Text PDFThe estrogen receptor-α (ERα) determines the phenotype of breast cancers where it serves as a positive prognostic indicator. ERα is a well-established target for breast cancer therapy, but strategies to target its function remain of interest to address therapeutic resistance and further improve treatment. Recent findings indicate that proteasome inhibition can regulate estrogen-induced transcription, but how ERα function might be regulated was uncertain.
View Article and Find Full Text PDFInterstrand crosslink (ICL)-inducing agents block the separation of the two DNA strands. They prevent transcription and replication and are used in clinics for the treatment of cancer and skin diseases. Here, we have introduced a single psoralen ICL at a specific site in plasmid DNA using a triplex-forming-oligonucleotide (TFO)-psoralen conjugate and studied its repair in Xenopus egg extracts that support nuclear assembly and replication of plasmid DNA.
View Article and Find Full Text PDFChromatin insulators/boundary elements share the ability to insulate a transgene from its chromosomal context by blocking promiscuous enhancer-promoter interactions and heterochromatin spreading. Several insulating factors target different DNA consensus sequences, defining distinct subfamilies of insulators. Whether each of these families and factors might possess unique cellular functions is of particular interest.
View Article and Find Full Text PDF