Publications by authors named "Magali Fondeur-Gelinotte"

The human beta1,3-glucuronosyltransferases galactose-beta1,3-glucuronosyltransferase I (GlcAT-I) and galactose-beta1,3-glucuronosyltransferase P (GlcAT-P) are key enzymes involved in proteoglycan and HNK-1 carbohydrate epitope synthesis, respectively. Analysis of their acceptor specificity revealed that GlcAT-I was selective toward Galbeta1,3Gal (referred to as Gal2-Gal1), whereas GlcAT-P presented a broader profile. To understand the molecular basis of acceptor substrate recognition, we constructed mutants and chimeric enzymes based on multiple sequence alignment and structural information.

View Article and Find Full Text PDF

The beta1,3-glucuronosyltransferases are responsible for the completion of the protein-glycosaminoglycan linkage region of proteoglycans and of the HNK1 epitope of glycoproteins and glycolipids by transferring glucuronic acid from UDP-alpha-D-glucuronic acid (UDP-GlcA) onto a terminal galactose residue. Here, we develop phylogenetic and mutational approaches to identify critical residues involved in UDP-GlcA binding and enzyme activity of the human beta1,3-glucuronosyltransferase I (GlcAT-I), which plays a key role in glycosaminoglycan biosynthesis. Phylogeny analysis identified 119 related beta1,3-glucuronosyltransferase sequences in vertebrates, invertebrates, and plants that contain eight conserved peptide motifs with 15 highly conserved amino acids.

View Article and Find Full Text PDF

The galactose-beta1,3-glucuronosyltransferase I (GlcAT-I) catalyzes the transfer of glucuronic acid from UDP-alpha-D-glucuronic acid onto the terminal galactose of the trisaccharide glycosaminoglycan-protein linker region of proteoglycans. This enzyme plays a key role in the process of proteoglycan assembly since the completion of the linkage region is essential for the conversion of a core protein into a functional proteoglycan. To investigate the enzymatic properties of human GlcAT-I, we established an expression system for producing a soluble form of enzyme in the methylotrophic yeast Pichia pastoris and developed a three-step purification procedure using a combination of anion exchange, cation exchange and heparin chromatographies.

View Article and Find Full Text PDF