Unlabelled: Microbial lipopeptides are synthesized by nonribosomal peptide synthetases and are composed of a hydrophobic fatty acid chain and a hydrophilic peptide moiety. These structurally diverse amphiphilic molecules can interact with biological membranes and possess various biological activities, including antiviral properties. This study aimed to evaluate the cytotoxicity and antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 15 diverse lipopeptides to understand their structure-activity relationships.
View Article and Find Full Text PDFApple scab, caused by the hemibiotrophic fungus Venturia inaequalis, is currently the most common and damaging disease in apple orchards. Two strains of V. inaequalis (S755 and Rs552) with different sensitivities to azole fungicides and the bacterial metabolite fengycin were compared to determine the mechanisms responsible for these differences.
View Article and Find Full Text PDFLipopeptides produced by beneficial bacilli present promising alternatives to chemical pesticides for plant biocontrol purposes. Our research explores the distinct plant biocontrol activities of lipopeptides surfactin (SRF) and fengycin (FGC) by examining their interactions with lipid membranes. Our study shows that FGC exhibits a direct antagonistic activity against Botrytis cinerea and no marked immune-eliciting activity in Arabidopsis thaliana while SRF only demonstrates an ability to stimulate plant immunity.
View Article and Find Full Text PDFVitamin C is one of the most sensitive cosmetic active ingredients. To avoid its degradation, its encapsulation into biobased carriers such as dendrimers is one alternative of interest. In this work, we wanted to evaluate the potential of two biobased glycerodendrimer families (GlyceroDendrimers-Poly(AmidoAmine) (GD-PAMAMs) or GlyceroDendrimers-Poly(Propylene Imine) (GD-PPIs)) as a vitamin C carrier for topical application.
View Article and Find Full Text PDFThe role of membrane lipids is increasingly claimed to explain biological activities of natural amphiphile molecules. To decipher this role, biophysical studies with biomimetic membrane models are often helpful to obtain insights at the molecular and atomic levels. In this review, the added value of biophysics to study lipid-driven biological processes is illustrated using the case of surfactins, a class of natural lipopeptides produced by sp.
View Article and Find Full Text PDFApple scab is an important disease conventionally controlled by chemical fungicides, which should be replaced by more environmentally friendly alternatives. One of these alternatives could be the use of lipopeptides produced by . The objective of this work is to study the action of the three families of lipopeptides and different mixtures of them in vitro and in vivo against .
View Article and Find Full Text PDFFor this study, new dendrimers were prepared from poly(propylene imine) (PPI) and polyamidoamine (PAMAM) dendrimers using an efficient acid-base reaction with various phenolic acids. The syntheses were also optimized in both microwave and microfluidic reactors. These ionic and hydrophilic dendrimers were fully characterized and showed excellent antioxidant properties.
View Article and Find Full Text PDFPlants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane.
View Article and Find Full Text PDFRhamnolipids (RLs) are among the most important biosurfactants produced by microorganisms, and have been widely investigated because of their multiple biological activities. Their action appears to depend on their structural interference with lipid membranes, therefore several studies have been performed to investigate this aspect. We studied by X-ray scattering, neutron reflectometry and molecular dynamic simulations the insertion of dirhamnolipid (diRL), the most abundant RL, in model cellular membranes made of phospholipids and glycosphingolipids.
View Article and Find Full Text PDFOxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs).
View Article and Find Full Text PDFBacillus velezensis is considered as a model species belonging to the so-called Bacillus subtilis complex that evolved typically to dwell in the soil rhizosphere niche and establish an intimate association with plant roots. This bacterium provides protection to its natural host against diseases and represents one of the most promising biocontrol agents. However, the molecular basis of the cross talk that this bacterium establishes with its natural host has been poorly investigated.
View Article and Find Full Text PDFPlants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system.
View Article and Find Full Text PDFHydrophobic organic soil contaminants such as polycyclic aromatic hydrocarbons (PAH) are poorly mobile in the aqueous phase and tend to sorb to the soil matrix, resulting in low bioavailability. Some filamentous fungi are efficient in degrading this kind of pollutants. However, the mechanism of mobilization of hydrophobic compounds by non-motile microorganisms such as filamentous fungi needs investigations to improve pollutant bioavailability and bioremediation efficiency.
View Article and Find Full Text PDFThe plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM.
View Article and Find Full Text PDFHuman innate immunity to involves the trypanosome C-terminal kinesin KIFC1, which transports internalized trypanolytic factor apolipoprotein L1 (APOL1) within the parasite. We show that KIFC1 preferentially associates with cholesterol-containing membranes and is indispensable for mammalian infectivity. Knockdown of KIFC1 did not affect trypanosome growth but rendered the parasites unable to infect mice unless antibody synthesis was compromised.
View Article and Find Full Text PDFFatty acid hydroperoxides (HPO) are free phyto-oxylipins known for their crucial role as signalling molecules during plant defense mechanisms. They were also demonstrated to have direct biocidal activities against plant pathogens including gram negative bacteria. In the present work, the biocidal effect of one linolenic fatty acid hydroperoxide, namely 13-HPOT has been investigated on three plant pathogen gram negative bacteria: Pectobacterium carotovorum, Pseudomonas syringae and Xanthomonas translucens.
View Article and Find Full Text PDFSaponins are plant secondary metabolites. There are associated with defensive roles due to their cytotoxicity and are active against microorganisms. Saponins are frequently targeted to develop efficient drugs.
View Article and Find Full Text PDFThe use of chemical herbicides could not only potentially induce negative impacts on the environment, animals, and human health, but also increase the weed resistance to herbicides. In this context, the use of plant extracts could be an interesting and natural alternative to chemical products. It is important to understand the mode of action of their bioactive compounds.
View Article and Find Full Text PDFPlant (or phyto-) oxylipins (POs) are produced under a wide range of stress conditions and although they are well known to activate stress-related signalling pathways, the nonsignalling roles of POs are poorly understood. We describe oxylipins as direct biocidal agents and propose that structure-function relationships play here a pivotal role. Based on their chemical configuration, POs, such as reactive oxygen and electrophile species, activate defence-related gene expression.
View Article and Find Full Text PDFSelf-assembly of peptides into supramolecular structures represents an active field of research with potential applications ranging from material science to medicine. Their study typically involves the application of a large toolbox of spectroscopic and imaging techniques. However, quite often, the structural aspects remain underexposed.
View Article and Find Full Text PDF