Publications by authors named "Magali Cucchiarini"

The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the lack of a cure for osteoarthritis, researchers aimed to address mitochondrial dysfunction by developing a new treatment that uses mitochondria to deliver gene therapy via recombinant adeno-associated viral (rAAV) vectors.
  • The study demonstrated that this mitochondria/rAAV system could successfully increase the expression of insulin-like growth factor I (IGF-I) in human osteoarthritic chondrocytes, showing up to an 8.4-fold increase compared to controls.
  • The strategy not only improved cell proliferation and survival but also boosted the production of the extracellular matrix and enhanced mitochondrial function, indicating its potential as a promising treatment for osteoarthritis.
View Article and Find Full Text PDF

Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects.

View Article and Find Full Text PDF

Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury.

View Article and Find Full Text PDF

Despite various clinical options, human anterior cruciate ligament (ACL) lesions do not fully heal. Biomaterial-guided gene therapy using recombinant adeno-associated virus (rAAV) vectors may improve the intrinsic mechanisms of ACL repair. Here, we examined whether poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can deliver rAAV vectors coding for the reparative basic fibroblast growth factor (FGF-2) and transforming growth factor beta (TGF-β) in human mesenchymal stromal cells (hMSCs) as a source of implantable cells in ACL lesions.

View Article and Find Full Text PDF

Objective: To categorize the temporal progression of subchondral bone alterations induced by compromising meniscus integrity in mouse and rat models of knee osteoarthritis (OA).

Method: Scoping review of investigations reporting subchondral bone changes with appropriate negative controls in the different mouse and rat models of OA induced by compromising meniscus integrity.

Results: The available literature provides appropriate temporal detail on subchondral changes in these models, covering the entire spectrum of OA with an emphasis on early and mid-term time points.

View Article and Find Full Text PDF

Objective: Sufficient evidence within the past two decades have shown that osteoarthritis (OA) has a sex-specific component. However, efforts to reveal the biological causes of this disparity have emerged more gradually. In this narrative review, we discuss anatomical differences within the knee, incidence of injuries in youth sports, and metabolic factors that present early in life (childhood and early adulthood) that can contribute to a higher risk of OA in females.

View Article and Find Full Text PDF

Background: Restoration of osteochondral defects is critical, because osteoarthritis (OA) can arise.

Hypothesis: Overexpression of insulin-like growth factor 1 (IGF-1) via recombinant adeno-associated viral (rAAV) vectors (rAAV-IGF-1) would improve osteochondral repair and reduce parameters of early perifocal OA in sheep after 6 months in vivo.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

Objective: To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA.

Method: Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each).

View Article and Find Full Text PDF

Purpose: Elucidating subchondral bone remodeling in preclinical models of traumatic meniscus injury may address clinically relevant questions about determinants of knee osteoarthritis (OA).

Methods: Studies on subchondral bone remodeling in larger animal models applying meniscal injuries as standardizing entity were systematically analyzed. Of the identified 5367 papers reporting total or partial meniscectomy, meniscal transection or destabilization, 0.

View Article and Find Full Text PDF

Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model.

View Article and Find Full Text PDF

Lesions in the human anterior cruciate ligament (ACL) are frequent, unsolved clinical issues due to the limited self-healing ability of the ACL and lack of treatments supporting full, durable ACL repair. Gene therapy guided through the use of biomaterials may steadily activate the processes of repair in sites of ACL injury. The goal of the present study was to test the hypothesis that functionalized poly(sodium styrene sulfonate)-grafted poly(ε-caprolactone) (pNaSS-grafted PCL) films can effectively deliver recombinant adeno-associated virus (rAAV) vectors as a means of overexpressing two reparative factors (transforming growth factor beta-TGF-β and basic fibroblast growth factor-FGF-2) in primary human ACL fibroblasts.

View Article and Find Full Text PDF

Objectives: To compare the cytotoxicity of octenidine dihydrochloride and chlorhexidine gluconate at different concentrations on primary human articular chondrocytes and cartilage.

Materials And Methods: Primary cultures of human normal adult articular chondrocytes were exposed to octenidine dihydrochloride (0.001562%, 0.

View Article and Find Full Text PDF
Article Synopsis
  • * Issues with mitochondrial function can lead to serious health problems, including aging, cancer, and neurodegenerative diseases.
  • * The review focuses on advanced strategies for improving mitochondrial health as a way to prevent or treat these diseases, highlighting new therapeutic approaches.
View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic debilitating degenerative disorder leading to structural, and functional anomaly of the joint. The present study tests the hypothesis that overexpression of the basic fibroblast growth factor (FGF-2) via direct rAAV-mediated gene transfer suppresses monosodium iodoacetate (MIA)-induced knee OA in rats relative to control (reporter rAAV-lacZ vector) gene transfer by intra-articular injection. Rats were treated with 20 μl rAAV-hFGF-2 on weekly basis; on days 7, 14, and 21 after single intra-articular injection of MIA (3 mg/50 μl saline).

View Article and Find Full Text PDF

The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo.

View Article and Find Full Text PDF

Background: Subchondral drilling is an established marrow stimulation technique for small cartilage defects, but whether drilling is required at all and if the drill hole density affects repair remains unclear.

Hypotheses: Osteochondral repair is improved when the subchondral bone is perforated by a higher number of drill holes per unit area, and drilling is superior to defect debridement alone.

Study Design: Controlled laboratory study.

View Article and Find Full Text PDF

This review summarizes the current literature available on joint cartilage alterations in long-duration spaceflight. Evidence from spaceflight participants is currently limited to serum biomarker data in only a few astronauts. Findings from analogue model research, such as bed rest studies, as well as data from animal and cell research in real microgravity indicate that unloading and radiation exposure are associated with joint degeneration in terms of cartilage thinning and changes in cartilage composition.

View Article and Find Full Text PDF

Implantation of genetically modified chondrogenically competent human bone marrow-derived mesenchymal stromal cells (hMSCs) is an attractive strategy to improve cartilage repair. The goal of this study was to examine the potential benefits of transferring a sequence coding for the () that modulates bone and cartilage formation, using recombinant adeno-associated virus (rAAV) vectors on the chondroreparative activities of hMSCs. Undifferentiated and chondrogenically induced primary human MSCs were treated with an rAAV-h construct to evaluate its effects on the proliferative, metabolic, and chondrogenic activities of the cells compared with control (reporter rAAV- vector) condition.

View Article and Find Full Text PDF

Osteoarthritis (OA) is characterized by critical alterations of the subchondral bone microstructure, besides the well-known cartilaginous changes. Clinical computed tomography (CT) detection of quantitative 3D microstructural subchondral bone parameters is applied to monitor changes of subchondral bone structure in different stages of human OA and is compared with micro-CT, the gold standard. Determination by clinical CT (287 µm resolution) of key microstructural parameters in tibial plateaus with mild-to-moderate and severe OA reveals strong correlations to micro-CT (35 µm), high inter- and intraobserver reliability, and small relative differences.

View Article and Find Full Text PDF
Article Synopsis
  • - Osteoarthritis (OA) is a common, progressive joint disease characterized by the degeneration of cartilage, with no current treatments capable of halting its irreversible progression.
  • - Mutations in mitochondrial DNA (mtDNA) found in cartilage cells contribute to the dysfunction leading to cartilage degeneration in OA, making mtDNA a potential target for new therapies.
  • - Advances in mitochondrial genome editing, particularly using CRISPR/Cas9 technology, show promise for treating OA by addressing mtDNA issues, but challenges remain in achieving effective and precise editing.
View Article and Find Full Text PDF

The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound.

View Article and Find Full Text PDF

Although osteoarthritis (OA), a leading cause of disability, has been associated with joint malalignment, scientific translational evidence for this link is lacking. In a clinical case study, we provide evidence of osteochondral recovery upon unloading symptomatic isolated medial tibiofemoral knee OA associated with varus malalignment. By mapping response correlations at high resolution, we identify spatially complex degenerative changes in cartilage after overloading in a clinically relevant ovine model.

View Article and Find Full Text PDF