Publications by authors named "Mafalda de Freitas"

The Australian snubfin dolphin (Orcaella heinsohni) is endemic to Australian waters, yet little is known about its abundance and habitat use. To investigate the feasibility of Passive Acoustic Monitoring for snubfin dolphins, biosonar clicks were recorded in Cygnet Bay, Australia, using a four-element hydrophone array. Clicks had a mean source level of 200 ± 5 dB re 1 μPa pp, transmission directivity index of 24 dB, mean centroid frequency of 98 ± 9 kHz, and a root-mean-square bandwidth of 31 ± 3 kHz.

View Article and Find Full Text PDF

Past researchers have found that gray seals (Halichoerus grypus) are capable of classifying vocal signals by call type using a trained set, but were unable to generalize to novel exemplars (Shapiro, Slater, & Janik, 2004). Given the importance of auditory categorization in communication, it would be surprising if the animals were unable to generalize acoustically similar calls into classes. Here, we trained a juvenile gray seal to discriminate novel calls into 2 classes, "growls" and "moans," by vocally matching call types (i.

View Article and Find Full Text PDF

Toothed whales produce echolocation clicks with source parameters related to body size; however, it may be equally important to consider the influence of habitat, as suggested by studies on echolocating bats. A few toothed whale species have fully adapted to river systems, where sonar operation is likely to result in higher clutter and reverberation levels than those experienced by most toothed whales at sea because of the shallow water and dense vegetation. To test the hypothesis that habitat shapes the evolution of toothed whale biosonar parameters by promoting simpler auditory scenes to interpret in acoustically complex habitats, echolocation clicks of wild Amazon river dolphins were recorded using a vertical seven-hydrophone array.

View Article and Find Full Text PDF

Echolocation is a key sensory modality for toothed whale orientation, navigation, and foraging. However, a more comparative understanding of the biosonar properties of toothed whales is necessary to understand behavioral and evolutionary adaptions. To address this, two free-ranging sympatric delphinid species, Australian humpback dolphins (Sousa sahulensis) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), were studied.

View Article and Find Full Text PDF