Publications by authors named "Mafalda Galhardo"

Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells.

View Article and Find Full Text PDF

The pancreas is a central organ for human diseases. Most alleles uncovered by genome-wide association studies of pancreatic dysfunction traits overlap with non-coding sequences of DNA. Many contain epigenetic marks of cis-regulatory elements active in pancreatic cells, suggesting that alterations in these sequences contribute to pancreatic diseases.

View Article and Find Full Text PDF

Visual integration of experimental data in metabolic networks is an important step to understanding their meaning. As genome-scale metabolic networks reach several thousand reactions, the task becomes more difficult and less revealing. While databases like KEGG and BioCyc provide curated pathways that allow a navigation of the metabolic landscape of an organism, it is rather laborious to map data directly onto those pathways.

View Article and Find Full Text PDF

Many single nucleotide polymorphisms (SNPs) associated with type 2 diabetes overlap with putative endocrine pancreatic enhancers, suggesting that these SNPs modulate enhancer activity and, consequently, gene expression. We performed in vivo mosaic transgenesis assays in zebrafish to quantitatively test the enhancer activity of type 2 diabetes-associated loci. Six out of 10 tested sequences are endocrine pancreatic enhancers.

View Article and Find Full Text PDF

The notochord is an evolutionary novelty in vertebrates that functions as an important signaling center during development. Notochord ablation in chicken has demonstrated that it is crucial for pancreas development; however, the molecular mechanism has not been fully described. Here, we show that in zebrafish, the loss of function of nog2, a Bmp antagonist expressed in the notochord, impairs β cell differentiation, compatible with the antagonistic role of Bmp in β cell differentiation.

View Article and Find Full Text PDF

DNA metabarcoding can contribute to improving cost-effectiveness and accuracy of biological assessments of aquatic ecosystems, but significant optimization and standardization efforts are still required to mainstream its application into biomonitoring programmes. In assessments based on freshwater macroinvertebrates, a key challenge is that DNA is often extracted from cleaned, sorted and homogenized bulk samples, which is time-consuming and may be incompatible with sample preservation requirements of regulatory agencies. Here, we optimize and evaluate metabarcoding procedures based on DNA recovered from 96% ethanol used to preserve field samples and thus including potential PCR inhibitors and nontarget organisms.

View Article and Find Full Text PDF

Obesity is an ever-growing epidemic where tissue homeostasis is influenced by the differentiation of adipocytes that function in lipid metabolism, endocrine and inflammatory processes. While this differentiation process has been well-characterized in mice, limited data is available from human cells. Applying microarray expression profiling in the human SGBS pre-adipocyte cell line, we identified genes with differential expression during differentiation in combination with constraint-based modeling of metabolic pathway activity.

View Article and Find Full Text PDF

Transcription factors (TFs) represent key factors to establish a cellular phenotype. It is known that several TFs could play a role in disease, yet less is known so far how their targets overlap. We focused here on identifying the most highly induced TFs and their putative targets during human adipogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes how disease-linked metabolic genes are regulated by multiple factors, showing that genes with high regulatory load are more likely to be associated with diseases across various cell types.
  • Using ChIP-Seq data from transcription factors, researchers discovered that genes under significant regulatory influence have a higher presence of active enhancers and are enriched with disease associations.
  • The findings suggest that these high regulatory load genes are influential in multiple biological pathways and are critical hubs within regulatory networks, indicating their potential role in disease mechanisms and outcomes.
View Article and Find Full Text PDF

Metabolic diseases and comorbidities represent an ever-growing epidemic where multiple cell types impact tissue homeostasis. Here, the link between the metabolic and gene regulatory networks was studied through experimental and computational analysis. Integrating gene regulation data with a human metabolic network prompted the establishment of an open-sourced web portal, IDARE (Integrated Data Nodes of Regulation), for visualizing various gene-related data in context of metabolic pathways.

View Article and Find Full Text PDF