SUMOylation of SLR1 at K2 protects productivity under salt stress, possibly by modulation of SLR1 interactome. DELLA proteins modulate GA signaling and are major regulators of plant plasticity to endure stress. DELLAs are mostly regulated at the post-translational level, and their activity relies on the interaction with upstream regulators and transcription factors (TFs).
View Article and Find Full Text PDFThe bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions.
View Article and Find Full Text PDFPost-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
May 2014
Manganese superoxide dismutase (MnSOD) is an essential primary antioxidant enzyme. MnSOD plays an important role in plant tolerance to abiotic stress and is a target candidate for increasing stress tolerance in crop plants. Although the structure and kinetic parameters of MnSODs from several organisms have been determined, this information is still lacking for plant MnSODs.
View Article and Find Full Text PDF