Publications by authors named "Maeve Caldwell"

With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue.

View Article and Find Full Text PDF

The extracellular matrix plays a critical role in modulating cell behaviour in the developing and adult central nervous system influencing neural cell morphology, function and growth. Neurons and astrocytes, play vital roles in neural signalling and support respectively and respond to cues from the surrounding matrix environment. However, a better understanding of the impact of specific individual extracellular matrix proteins on both neurons and astrocytes is critical for advancing the development of matrix-based scaffolds for neural repair applications.

View Article and Find Full Text PDF

Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression.

View Article and Find Full Text PDF

Astrocytes are mediators of homeostasis but contribute to neuroinflammation in Parkinson's disease (PD). Mounting evidence suggests involvement of peripheral immune cells in PD pathogenesis. Therefore, this study aimed to determine the potential role of peripheral immune secreted cytokines in modulating midbrain astrocyte reactivity.

View Article and Find Full Text PDF

This scientific commentary refers to 'Human stem cell-derived astrocytes exhibit region-specific heterogeneity in their secretory profiles', by Clarke (https://doi.org/10.1093/brain/awaa258) in Brain.

View Article and Find Full Text PDF

The LIM homeodomain transcription factors LMX1A and LMX1B are essential mediators of midbrain dopaminergic neuronal (mDAN) differentiation and survival. Here we show that LMX1A and LMX1B are autophagy transcription factors that provide cellular stress protection. Their suppression dampens the autophagy response, lowers mitochondrial respiration, and elevates mitochondrial ROS, and their inducible overexpression protects against rotenone toxicity in human iPSC-derived mDANs in vitro.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative disease and affects approximately 2-3% of the population over the age of 65. PD is characterised by the loss of dopaminergic neurons from the substantia nigra, leading to debilitating motor symptoms including bradykinesia, tremor, rigidity, and postural instability. PD also results in a host of non-motor symptoms such as cognitive decline, sleep disturbances and depression.

View Article and Find Full Text PDF

In Parkinson's disease, progressive dysfunction and degeneration of dopamine neurons in the ventral midbrain cause life-changing symptoms. Neuronal degeneration has diverse causes in Parkinson's, including non-cell autonomous mechanisms mediated by astrocytes. Throughout the CNS, astrocytes are essential for neuronal survival and function, as they maintain metabolic homeostasis in the neural environment.

View Article and Find Full Text PDF

Parkinson's disease (PD), the second most common neurodegenerative disease, is characterised by the motor symptoms of bradykinesia, rigidity and resting tremor and non-motor symptoms of sleep disturbances, constipation, and depression. Pathological hallmarks include neuroinflammation, degeneration of dopaminergic neurons in the substantia nigra pars compacta, and accumulation of misfolded α-synuclein proteins as intra-cytoplasmic Lewy bodies and neurites. Microglia and astrocytes are essential to maintaining homeostasis within the central nervous system (CNS), including providing protection through the process of gliosis.

View Article and Find Full Text PDF

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions .

View Article and Find Full Text PDF

To appreciate the positive or negative impact of autophagy during the initiation and progression of human diseases, the isolation or de novo generation of appropriate cell types is required to support focused in vitro assays. In human neurodegenerative diseases such as Parkinson's disease (PD), specific subsets of acutely sensitive neurons become susceptible to stress-associated operational decline and eventual cell death, emphasizing the need for functional studies in those vulnerable groups of neurons. In PD, a class of dopaminergic neurons in the ventral midbrain (mDANs) is affected.

View Article and Find Full Text PDF

Neural stem cells isolated from the developing and adult brain are an ideal source of cells for use in clinical applications such as cell replacement therapy. The clear advantage of these cells over the more commonly utilised embryonic and pluripotent stem cells is that they are already neurally committed. Of particular importance is the fact that these cells don't require the same level of in vitro culture that can be cost and labour intensive.

View Article and Find Full Text PDF

Effective and efficient generation of human neural stem cells and subsequently functional neural populations from pluripotent stem cells has facilitated advancements in the study of human development and disease modelling. This review will discuss the established protocols for the generation of defined neural populations including regionalized neurons and astrocytes, oligodendrocytes and microglia. Early protocols were established in embryonic stem cells (ESC) but the discovery of induced pluripotent stem cells (iPSC) in 2006 provided a new platform for modelling human disorders of the central nervous system (CNS).

View Article and Find Full Text PDF

The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes.

View Article and Find Full Text PDF

Abnormal alpha-synuclein (α-synuclein) expression and aggregation is a key characteristic of Parkinson's disease (PD). However, the exact mechanism(s) linking α-synuclein to the other central feature of PD, dopaminergic neuron loss, remains unclear. Therefore, improved cell and in vivo models are needed to investigate the role of α-synuclein in dopaminergic neuron loss.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPSCs, and to subsequently direct their differentiation towards those classes of neurons that are vulnerable to stress, is revealing how genetic mutations cause changes at the molecular level that drive the complex pathogeneses of human neurodegenerative diseases. Autophagy dysregulation is considered to be a major contributor in neural decline during the onset and progression of many human neurodegenerative diseases, meaning that a better understanding of the control of non-selective and selective autophagy pathways (including mitophagy) in disease-affected classes of neurons is needed.

View Article and Find Full Text PDF

Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta in the brain with an unknown cause. Current pharmacological treatments for PD are only symptomatic and there is still no cure for this disease nowadays. In fact, transplantation of human fetal ventral midbrain cells into PD brains has provided a proof of concept that cell replacement therapy can be used for some PD patients, beneficial for improving their symptoms.

View Article and Find Full Text PDF

Mitochondrial dysfunction represents a critical step during the pathogenesis of Parkinson's disease (PD), and increasing evidence suggests abnormal mitochondrial dynamics and quality control as important underlying mechanisms. The VPS35 gene, which encodes a key component of the membrane protein-recycling retromer complex, is the third autosomal-dominant gene associated with PD. However, how VPS35 mutations lead to neurodegeneration remains unclear.

View Article and Find Full Text PDF

Brain Computer Interfaces (BCI) currently represent a field of intense research aimed both at understanding neural circuit physiology and at providing functional therapy for traumatic or degenerative neurological conditions. Due to its chemical inertness, biocompatibility and stability, diamond is currently being actively investigated as a potential substrate material for culturing cells and for use as the electrically active component of a neural sensor. Here we provide a protocol for the differentiation of mature, electrically active neurons on microcrystalline synthetic thin-film diamond substrates starting from undifferentiated pluripotent stem cells.

View Article and Find Full Text PDF

The composition of the neuronal cell surface dictates synaptic plasticity and thereby cognitive development. This remodeling of the synapses is governed by the endocytic network which internalize transmembrane proteins, then sort them back to the cell surface or carry them to the lysosome for degradation. The multi-protein retromer complex is central to this selection, capturing specific transmembrane proteins and remodeling the cell membrane to form isolated cargo-enriched transport carriers.

View Article and Find Full Text PDF

Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein.

View Article and Find Full Text PDF

Retromer is a protein assembly that plays a central role in orchestrating export of transmembrane-spanning cargo proteins from endosomes into retrieval pathways destined for the Golgi apparatus and the plasma membrane [1]. Recently, a specific mutation in the retromer component VPS35, VPS35(D620N), has linked retromer dysfunction to familial autosomal dominant and sporadic Parkinson disease [2, 3]. However, the effect of this mutation on retromer function remains poorly characterized.

View Article and Find Full Text PDF